Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Neurol ; 43(2): 224-35, 1998 Feb.
Article in English | MEDLINE | ID: mdl-9485064

ABSTRACT

Definition in the living premature infant of the anatomical and temporal characteristics of development of critical brain structures is crucial for insight into the time of greatest vulnerability of such brain structures. We used three-dimensional magnetic resonance imaging (3D MRI) and image-processing algorithms to quantitate total brain volume and total volumes of cerebral gray matter (GM), unmyelinated white matter (WM), myelinated WM, and cerebrospinal fluid (CSF) in 78 premature and mature newborns (postconceptional age, 29-41 weeks). Total brain tissue volume was shown to increase linearly at a rate of 22 ml/wk. Total GM showed a linear increase in relative intracranial volume of approximately 1.4% or 15 ml in absolute volume per week. The pronounced increase in total GM reflected primarily a fourfold increase in cortical GM. Unmyelinated WM was found to be the most prominent brain tissue class in the preterm infant younger than 36 weeks of postconceptional age. Although minimal myelinated WM was present in the preterm infant at 29 weeks, between 35 and 41 weeks an abrupt fivefold increase in absolute volume of myelinated WM was documented. Extracerebral and intraventricular CSF was readily quantitated by this technique and found to change minimally. The application of 3D MRI and tissue segmentation to the study of human infant brain from 29 to 41 weeks of postconceptional age has provided new insights into cerebral cortical development and myelination and has for the first time provided means of quantitative assessment in vivo of early human brain development.


Subject(s)
Brain/growth & development , Infant, Newborn , Infant, Premature , Magnetic Resonance Imaging , Body Composition , Brain/anatomy & histology , Cerebrospinal Fluid , Female , Humans , Image Processing, Computer-Assisted , Male , Parity , Prospective Studies , Reference Values
2.
Brain Res ; 707(2): 146-54, 1996 Jan 29.
Article in English | MEDLINE | ID: mdl-8919291

ABSTRACT

Rates of ATP metabolism generally are higher in cerebral gray matter compared to white matter. In order to study the physiology of this regional difference in vivo, the 1-dimensional chemical shift imaging technique (1D-CSI) was used to acquire 31P nuclear magnetic resonance spectra from 2.5 mm slices of 4-week old piglet brains. Spectra from predominantly gray matter slices (estimated 76% gray matter, 7 mm below the scalp) were compared to predominantly white matter slices (56% estimated white matter, 13 mm below the scalp) as assessed by magnetic resonance images. The 1D-CSI technique introduced no systematic changes in the ratio of signals from a single chamber phantom containing a phosphocreatine (PCr) and ATP solution. Gray matter slices showed a PCr/NTP ratio of 0.93 +/- 0.11 (mean +/- S.D.) using a 2 s interpulse interval, a value very close to the ratio in surface coil localized spectra. The predominantly white matter slices showed a PCr/NTP ratio of 1.32 +/- 0.18 (P < 0.02 for gray versus white matter). Using the estimated percentages of gray and white matter in the two slices and calculated concentrations from fully relaxed spectra, the gray matter PCr/NTP ratio is approximately 0.77, while the ratio in white matter is approximately 2.18. The difference in PCr/NTP measured in vivo suggests that either the total NTP concentration is higher or the steady state PCr concentration is lower in gray matter than in white matter in the piglet brain.


Subject(s)
Adenosine Triphosphate/metabolism , Brain Chemistry/physiology , Phosphocreatine/metabolism , Animals , Magnetic Resonance Imaging , Phosphorus Isotopes , Swine , Swine, Miniature
3.
J Thorac Cardiovasc Surg ; 108(2): 291-301, 1994 Aug.
Article in English | MEDLINE | ID: mdl-8041177

ABSTRACT

UNLABELLED: Previous studies have suggested that a simple crystalloid "cerebroplegic" solution may prolong the safe duration of hypothermic circulatory arrest. We tested the hypothesis that pharmacologic modification of the cerebroplegic solution would further enhance cerebral protection. Forty-six 4-week-old miniature piglets underwent core cooling to 15 degrees C nasopharyngeal temperature and 2 hours of hypothermic circulatory arrest. Twelve animals had a 50 ml/kg dose of saline infused into the carotid artery system at the onset of hypothermic circulatory arrest and repeat doses of 10 ml/kg every 30 minutes during arrest. Eleven animals received the same initial and repeat doses of University of Wisconsin organ preservation solution and 10 received University of Wisconsin solution with 7.5 mg/L of MK-801, an excitatory neurotransmitter antagonist. In 13 control animals blood was partially drained from the piglet before 2 hours of circulatory arrest at 15 degrees C and no cerebroplegic solution was infused. All solutions were delivered at 4 degrees C. Brain temperature (n = 24) at the onset of hypothermic circulatory arrest was 15.0 degrees +/- 0.1 degrees C (mean +/- standard error). Brain temperature after cerebroplegic infusion dropped to 13.0 degrees +/- 0.3 degrees C and stayed lower than brain temperature in the control group throughout the hypothermic circulatory arrest period. Recovery of cerebral adenosine triphosphate and intracellular pH determined by phosphorus 31 magnetic resonance spectroscopy (n = 22) was significantly improved by saline infusion and was further improved with University of Wisconsin solution and University of Wisconsin solution plus MK-801 (p < 0.001). Recovery of cerebral blood flow measured by microspheres (n = 24) also was augmented by University of Wisconsin solution (p < 0.001) but not in the presence of MK-801. The vascular resistance response to acetylcholine and nitroglycerin suggested that MK-801 has a direct vasoconstrictive effect. Recovery of cerebral oxygen consumption (n = 24) was increased by University of Wisconsin solution and University of Wisconsin solution with MK-801 (p = 0.002). Brain water content (n = 46) was significantly lower in all cerebroplegia-treated groups than in controls (p < 0.001). CONCLUSION: Cerebroplegia improves short-term recovery after 2 hours of circulatory arrest in hypothermic piglets. Pharmacologic modification with University of Wisconsin solution further improves the recovery of cerebral blood flow and metabolism. MK-801 does not augment the protective effects of University of Wisconsin solution and reduces the recovery of cerebral blood flow by a direct vascular action. Modified cerebroplegia may provide a novel approach to improved cerebral protection when prolonged hypothermic circulatory arrest is necessary.


Subject(s)
Brain/drug effects , Cardioplegic Solutions/pharmacology , Cerebrovascular Circulation/drug effects , Dizocilpine Maleate/pharmacology , Heart Arrest, Induced , Organ Preservation Solutions , Adenosine/pharmacology , Adenosine Triphosphate/metabolism , Allopurinol/pharmacology , Animals , Brain/metabolism , Brain Chemistry/drug effects , Glucose/metabolism , Glutathione/pharmacology , Hydrogen-Ion Concentration , Hypothermia, Induced , Insulin/pharmacology , Oxygen/metabolism , Raffinose/pharmacology , Swine , Swine, Miniature , Vascular Resistance/drug effects
4.
Ann Thorac Surg ; 58(1): 146-53, 1994 Jul.
Article in English | MEDLINE | ID: mdl-7518665

ABSTRACT

Brain protection during cardiopulmonary bypass and hypothermic circulatory arrest is incomplete. Activation of blood protease cascades may contribute to cellular injury under these conditions. To test this hypothesis, effects of the protease inhibitor aprotinin on recovery of brain energy metabolism after hypothermic circulatory arrest were studied in the piglet. Twenty-four 4-week-old piglets (10 aprotinin-treated and 14 control) underwent core cooling, 1 hour of circulatory arrest at 15 degrees C, reperfusion and rewarming (45 minutes), and normothermic perfusion (3 hours) on cardiopulmonary bypass. Cerebral high-energy phosphate concentration and intracellular pH were studied by phosphorus-31 magnetic resonance spectroscopy in 12 animals. In the remaining animals cerebral and regional blood flow were measured with radioactive microspheres and carotid artery blood flow was measured with an electromagnetic flowmeter. Cerebral oxygen and glucose extraction were measured, and vascular resistance responses to endothelium-dependent (acetylcholine) and -independent (nitroglycerin) vasodilators were calculated. Recovery of cerebral adenosine triphosphate (p = 0.02) and intracellular pH (p = 0.04) in the initial 30 minutes of reperfusion was accelerated in the aprotinin-treated piglets. These piglets showed a greater in vivo cerebral and systemic endothelium-mediated vasodilation (acetylcholine response: cerebral p < 0.01, systemic p = 0.04) after reperfusion. The response to endothelium-independent vasodilation (nitroglycerin) was the same in both groups. Carotid blood flow tended to be greater at 20 minutes of reperfusion and less during 45 to 80 minutes after reperfusion in the aprotinin-treated animals. Brain water content postoperatively was 0.8077 in the aprotinin group and 0.8122 in control animals (p = 0.06).(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Aprotinin/therapeutic use , Brain/metabolism , Heart Arrest, Induced , Animals , Body Water/metabolism , Cerebrovascular Circulation/physiology , Energy Metabolism/drug effects , Hydrogen-Ion Concentration , Hypothermia, Induced , Magnetic Resonance Spectroscopy , Oxygen Consumption/physiology , Regional Blood Flow/physiology , Swine , Swine, Miniature
5.
J Cereb Blood Flow Metab ; 14(1): 156-65, 1994 Jan.
Article in English | MEDLINE | ID: mdl-8263052

ABSTRACT

Brain protection during open heart surgery in the neonate and infant remains inadequate. Effects of the excitatory neurotransmitter antagonists MK-801 and NBQX on recovery of brain cellular energy state and metabolic rates were evaluated in 34 4-week-old piglets (10 MK-801, 10 NBQX, 14 controls) undergoing cardiopulmonary bypass and hypothermic circulatory arrest at 15 degrees C nasopharyngeal temperature for 1 h, as is used clinically for repair of congenital heart defects. MK-801 (dizocilpine) (0.75 mg/kg) or NBQX [2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline] (25 mg/kg) was given intravenously before cardiopulmonary bypass. Equivalent doses were placed in the cardiopulmonary bypass prime plus continuous infusions after reperfusion (0.15 mg kg-1h-1 and 5 mg kg-1h-1). Changes in high-energy phosphate concentrations and pH were analyzed by magnetic resonance spectroscopy in 17 animals until 225 min after reperfusion. Cerebral blood flow determined by radioactive microspheres as well as cerebral oxygen and glucose consumption were studied in 17 other animals. Cerebral blood flow and oxygen consumption were depressed relative to control by both MK-801 and NBQX at baseline. Recovery of phosphocreatine (p = 0.010), ATP (p = 0.030), and intracellular pH (p = 0.004) was accelerated by MK-801 and retarded by NBQX over the 45 min of rewarming reperfusion and the first hour of normothermic reperfusion. The final recovery of ATP at 3 h and 45 min reperfusion was significantly reduced by NBQX (46 +/- 26% baseline, mean +/- SD) versus control (81 +/- 19%) and MK-801 (75 +/- 8%) (p = 0.030). Cerebral oxygen consumption recovered to 105 +/- 30% baseline in group MK-801 and 94 +/- 31% in control but only to 61 +/- 22% in group NBQX (p = 0.070). Cerebral blood flow stayed significantly lower in group NBQX relative to control. Thus, MK-801 accelerates recovery of cerebral high-energy phosphates and metabolic rate after cardiopulmonary bypass and hypothermic circulatory arrest in the immature animal. At the dosage used NBQX exerts an adverse effect.


Subject(s)
Brain/metabolism , Dizocilpine Maleate/pharmacology , Heart Arrest, Induced , Quinoxalines/pharmacology , Animals , Cerebrovascular Circulation , Energy Metabolism , Glucose/metabolism , Hydrogen-Ion Concentration , Intracellular Membranes/metabolism , Lactates/metabolism , Lactic Acid , Oxygen/metabolism , Phosphates/metabolism , Swine , Swine, Miniature
6.
J Thorac Cardiovasc Surg ; 106(4): 671-85, 1993 Oct.
Article in English | MEDLINE | ID: mdl-8412262

ABSTRACT

A miniature piglet model that replicates clinical hypothermic (14 degrees C nasopharyngeal) circulatory arrest and low-flow (50 ml/kg per minute) bypass was used to study carotid blood flow with electromagnetic flow probe, cerebral blood flow by microsphere injection, cerebral metabolic rate by arteriovenous oxygen and glucose extractions, lactate production by cerebral arteriovenous difference, and cerebral edema. Data from five animals that underwent circulatory arrest and five animals that underwent low-flow bypass (aged 28.8 +/- 0.4 [mean +/- standard error of the mean] days) were analyzed. The duration of circulatory arrest and low-flow bypass was 1 hour. In a parallel study with the same animal model, phosphorus 31 magnetic resonance spectroscopy was used to assess cerebral phosphocreatine, nucleoside triphosphate (adenosine triphosphate), and intracellular pH. Five animals (aged 31.8 +/- 1.1 days) underwent circulatory arrest, and five underwent low-flow bypass. A brief phase of hyperemic carotid blood flow was seen immediately after the onset of reperfusion in the circulatory arrest group but not in the low-flow group. In the circulatory arrest and low-flow bypass groups, cerebral blood flow (percentage of baseline 71.2% +/- 8.3% and 69.1% +/- 5.8%, respectively), cerebral oxygen consumption (45.6% +/- 10.0%, 44.5% +/- 7.6%), and cerebral glucose consumption (31.5% +/- 30.7%, 83.5% +/- 24.2%) remained depressed after 45 minutes of reperfusion and rewarming to normothermia. However, after 3 more hours of pulsatile normothermic reperfusion, cerebral oxygen consumption and cerebral glucose consumption had returned to baseline. Phosphocreatine, adenosine triphosphate, and pH were maintained at or above baseline levels throughout low-flow bypass and throughout 3 hours of normothermic reperfusion. In contrast, both phosphocreatine and adenosine triphosphate became undetectable 32 +/- 3.7 minutes after onset of circulatory arrest. During and early after circulatory arrest, pH decreased to a minimum of 6.506 +/- 0.129 at 40 minutes after reperfusion. After 3 hours of normothermic reperfusion, phosphocreatine and adenosine triphosphate recovered to 98.6% +/- 9.0% and 90.1% +/- 13.5% of baseline, respectively, and pH was 7.087 +/- 0.051, similar to baseline (7.1755 +/- 0.041). In the low-flow bypass group, the disparity between the depressed level of cerebral oxygen consumption and normal high-energy phosphate levels may reflect incomplete cerebral rewarming or decreased energy consumption. In the circulatory arrest group, the parallel recovery of oxygen consumption and high-energy phosphates eventually achieving baseline levels suggests that the degree of hypothermia used provides adequate protection for acute cerebral recovery after 1 hour of circulatory arrest.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Brain/metabolism , Cardiopulmonary Bypass , Cerebrovascular Circulation/physiology , Heart Arrest, Induced , Adenosine Triphosphate/blood , Animals , Animals, Newborn , Carotid Arteries/physiology , Hydrogen-Ion Concentration , Hypothermia, Induced , Oxygen Consumption , Phosphocreatine/analogs & derivatives , Phosphocreatine/blood , Regional Blood Flow , Rheology , Swine
7.
Ann Thorac Surg ; 55(5): 1093-103, 1993 May.
Article in English | MEDLINE | ID: mdl-8494416

ABSTRACT

The pH management that provides optimal organ protection during hypothermic circulatory arrest is uncertain. Recent retrospective clinical data suggest that the pH-stat strategy (maintenance of pH at 7.40 corrected to core temperature) may improve brain protection during hypothermic cardiopulmonary bypass with a period of circulatory arrest in infants. The impact of alpha-stat (group A) and pH-stat (group P) strategies on recovery of cerebral high-energy phosphates and intracellular pH measured by magnetic resonance spectroscopy (A, n = 7; P, n = 5), organ blood flow measured by microspheres, cerebral metabolic rate measured by oxygen and glucose extraction (A, n = 7; P, n = 6), and cerebral edema was studied in 25 4-week-old piglets undergoing core cooling and 1 hour of circulatory arrest at 15 degrees C. Group P had greater cerebral blood flow during core cooling (54.3% +/- 4.7% versus 34.2% +/- 1.5% of normothermic baseline, respectively; p = 0.001). The intracellular pH during core cooling showed an alkaline shift in both groups but became more alkaline in group A than in group P at the end of cooling (7.08 to 7.63 versus 7.09 to 7.41, respectively; p = 0.013). Recovery of cerebral adenosine triphosphate (p = 0.046) and intracellular pH (p = 0.014) in the initial 30 minutes of reperfusion was faster in group P. The cerebral intracellular pH became more acidotic during early reperfusion in group A, whereas it showed continuous recovery in group P. Brain water content postoperatively was less in group P (0.8075) than in group A (0.8124) (p = 0.05). These results suggest that compared with alpha-stat, the pH-stat strategy provides better early brain recovery after deep hypothermic cardiopulmonary bypass with circulatory arrest in the immature animal. Possible mechanisms include improved brain cooling by increased blood flow to subcortical areas, improved oxygen delivery, and reduction of reperfusion injury, as well as an alkaline shift in intracellular pH with hypothermia in spite of a stable blood pH.


Subject(s)
Brain/metabolism , Heart Arrest, Induced , Hypothermia, Induced , Acidosis/metabolism , Adenosine Triphosphate/metabolism , Animals , Body Temperature , Cerebrovascular Circulation , Energy Metabolism , Glucose/metabolism , Hydrogen-Ion Concentration , Kidney/blood supply , Lactates/blood , Magnetic Resonance Spectroscopy , Oxygen/blood , Oxygen Consumption , Phosphates/metabolism , Phosphocreatine/metabolism , Regional Blood Flow , Reperfusion , Swine , Swine, Miniature , Vascular Resistance
SELECTION OF CITATIONS
SEARCH DETAIL
...