Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
BMC Med Inform Decis Mak ; 19(Suppl 7): 273, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31865903

ABSTRACT

BACKGROUND: Clinical Named Entity Recognition is to find the name of diseases, body parts and other related terms from the given text. Because Chinese language is quite different with English language, the machine cannot simply get the graphical and phonetic information form Chinese characters. The method for Chinese should be different from that for English. Chinese characters present abundant information with the graphical features, recent research on Chinese word embedding tries to use graphical information as subword. This paper uses both graphical and phonetic features to improve Chinese Clinical Named Entity Recognition based on the presence of phono-semantic characters. METHODS: This paper proposed three different embedding models and tested them on the annotated data. The data have been divided into two sections for exploring the effect of the proportion of phono-semantic characters. RESULTS: The model using primary radical and pinyin can improve Clinical Named Entity Recognition in Chinese and get the F-measure of 0.712. More phono-semantic characters does not give a better result. CONCLUSIONS: The paper proves that the use of the combination of graphical and phonetic features can improve the Clinical Named Entity Recognition in Chinese.


Subject(s)
Language , Machine Learning , Natural Language Processing , Phonetics , Data Curation , Electronic Health Records , Humans , Semantics
2.
J Cheminform ; 10(1): 37, 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30105604

ABSTRACT

Pharmacovigilance (PV) databases record the benefits and risks of different drugs, as a means to ensure their safe and effective use. Creating and maintaining such resources can be complex, since a particular medication may have divergent effects in different individuals, due to specific patient characteristics and/or interactions with other drugs being administered. Textual information from various sources can provide important evidence to curators of PV databases about the usage and effects of drug targets in different medical subjects. However, the efficient identification of relevant evidence can be challenging, due to the increasing volume of textual data. Text mining (TM) techniques can support curators by automatically detecting complex information, such as interactions between drugs, diseases and adverse effects. This semantic information supports the quick identification of documents containing information of interest (e.g., the different types of patients in which a given adverse drug reaction has been observed to occur). TM tools are typically adapted to different domains by applying machine learning methods to corpora that are manually labelled by domain experts using annotation guidelines to ensure consistency. We present a semantically annotated corpus of 597 MEDLINE abstracts, PHAEDRA, encoding rich information on drug effects and their interactions, whose quality is assured through the use of detailed annotation guidelines and the demonstration of high levels of inter-annotator agreement (e.g., 92.6% F-Score for identifying named entities and 78.4% F-Score for identifying complex events, when relaxed matching criteria are applied). To our knowledge, the corpus is unique in the domain of PV, according to the level of detail of its annotations. To illustrate the utility of the corpus, we have trained TM tools based on its rich labels to recognise drug effects in text automatically. The corpus and annotation guidelines are available at: http://www.nactem.ac.uk/PHAEDRA/ .

3.
BMC Bioinformatics ; 16 Suppl 10: S2, 2015.
Article in English | MEDLINE | ID: mdl-26202570

ABSTRACT

BACKGROUND: Since their introduction in 2009, the BioNLP Shared Task events have been instrumental in advancing the development of methods and resources for the automatic extraction of information from the biomedical literature. In this paper, we present the Cancer Genetics (CG) and Pathway Curation (PC) tasks, two event extraction tasks introduced in the BioNLP Shared Task 2013. The CG task focuses on cancer, emphasizing the extraction of physiological and pathological processes at various levels of biological organization, and the PC task targets reactions relevant to the development of biomolecular pathway models, defining its extraction targets on the basis of established pathway representations and ontologies. RESULTS: Six groups participated in the CG task and two groups in the PC task, together applying a wide range of extraction approaches including both established state-of-the-art systems and newly introduced extraction methods. The best-performing systems achieved F-scores of 55% on the CG task and 53% on the PC task, demonstrating a level of performance comparable to the best results achieved in similar previously proposed tasks. CONCLUSIONS: The results indicate that existing event extraction technology can generalize to meet the novel challenges represented by the CG and PC task settings, suggesting that extraction methods are capable of supporting the construction of knowledge bases on the molecular mechanisms of cancer and the curation of biomolecular pathway models. The CG and PC tasks continue as open challenges for all interested parties, with data, tools and resources available from the shared task homepage.


Subject(s)
Gene Regulatory Networks , Genes , Information Storage and Retrieval , Knowledge Bases , Models, Theoretical , Neoplasms/genetics , Neoplasms/pathology , Humans , Natural Language Processing
4.
J Biomed Semantics ; 5: 26, 2014.
Article in English | MEDLINE | ID: mdl-25093067

ABSTRACT

BACKGROUND: Semantic Category Disambiguation (SCD) is the task of assigning the appropriate semantic category to given spans of text from a fixed set of candidate categories, for example Protein to "Fibrin". SCD is relevant to Natural Language Processing tasks such as Named Entity Recognition, coreference resolution and coordination resolution. In this work, we study machine learning-based SCD methods using large lexical resources and approximate string matching, aiming to generalise these methods with regard to domains, lexical resources and the composition of data sets. We specifically consider the applicability of SCD for the purposes of supporting human annotators and acting as a pipeline component for other Natural Language Processing systems. RESULTS: While previous research has mostly cast SCD purely as a classification task, we consider a task setting that allows for multiple semantic categories to be suggested, aiming to minimise the number of suggestions while maintaining high recall. We argue that this setting reflects aspects which are essential for both a pipeline component and when supporting human annotators. We introduce an SCD method based on a recently introduced machine learning-based system and evaluate it on 15 corpora covering biomedical, clinical and newswire texts and ranging in the number of semantic categories from 2 to 91. With appropriate settings, our system maintains an average recall of 99% while reducing the number of candidate semantic categories on average by 65% over all data sets. CONCLUSIONS: Machine learning-based SCD using large lexical resources and approximate string matching is sensitive to the selection and granularity of lexical resources, but generalises well to a wide range of text domains and data sets given appropriate resources and parameter settings. By substantially reducing the number of candidate categories while only very rarely excluding the correct one, our method is shown to be applicable to manual annotation support tasks and use as a high-recall component in text processing pipelines. The introduced system and all related resources are freely available for research purposes at: https://github.com/ninjin/simsem.

5.
Bioinformatics ; 28(18): i575-i581, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22962484

ABSTRACT

MOTIVATION: Event extraction using expressive structured representations has been a significant focus of recent efforts in biomedical information extraction. However, event extraction resources and methods have so far focused almost exclusively on molecular-level entities and processes, limiting their applicability. RESULTS: We extend the event extraction approach to biomedical information extraction to encompass all levels of biological organization from the molecular to the whole organism. We present the ontological foundations, target types and guidelines for entity and event annotation and introduce the new multi-level event extraction (MLEE) corpus, manually annotated using a structured representation for event extraction. We further adapt and evaluate named entity and event extraction methods for the new task, demonstrating that both can be achieved with performance broadly comparable with that for established molecular entity and event extraction tasks. AVAILABILITY: The resources and methods introduced in this study are available from http://nactem.ac.uk/MLEE/. CONTACT: pyysalos@cs.man.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Data Mining/methods , Humans , Neoplasms
6.
BMC Bioinformatics ; 13 Suppl 11: S1, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22759455

ABSTRACT

BACKGROUND: The Genia task, when it was introduced in 2009, was the first community-wide effort to address a fine-grained, structural information extraction from biomedical literature. Arranged for the second time as one of the main tasks of BioNLP Shared Task 2011, it aimed to measure the progress of the community since 2009, and to evaluate generalization of the technology to full text papers. The Protein Coreference task was arranged as one of the supporting tasks, motivated from one of the lessons of the 2009 task that the abundance of coreference structures in natural language text hinders further improvement with the Genia task. RESULTS: The Genia task received final submissions from 15 teams. The results show that the community has made a significant progress, marking 74% of the best F-score in extracting bio-molecular events of simple structure, e.g., gene expressions, and 45% ~ 48% in extracting those of complex structure, e.g., regulations. The Protein Coreference task received 6 final submissions. The results show that the coreference resolution performance in biomedical domain is lagging behind that in newswire domain, cf. 50% vs. 66% in MUC score. Particularly, in terms of protein coreference resolution the best system achieved 34% in F-score. CONCLUSIONS: Detailed analysis performed on the results improves our insight into the problem and suggests the directions for further improvements.


Subject(s)
Information Systems , Natural Language Processing , Proteins/chemistry , Congresses as Topic , Gene Expression , Proteins/genetics , Proteins/metabolism
7.
BMC Bioinformatics ; 13 Suppl 11: S2, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22759456

ABSTRACT

We present the preparation, resources, results and analysis of three tasks of the BioNLP Shared Task 2011: the main tasks on Infectious Diseases (ID) and Epigenetics and Post-translational Modifications (EPI), and the supporting task on Entity Relations (REL). The two main tasks represent extensions of the event extraction model introduced in the BioNLP Shared Task 2009 (ST'09) to two new areas of biomedical scientific literature, each motivated by the needs of specific biocuration tasks. The ID task concerns the molecular mechanisms of infection, virulence and resistance, focusing in particular on the functions of a class of signaling systems that are ubiquitous in bacteria. The EPI task is dedicated to the extraction of statements regarding chemical modifications of DNA and proteins, with particular emphasis on changes relating to the epigenetic control of gene expression. By contrast to these two application-oriented main tasks, the REL task seeks to support extraction in general by separating challenges relating to part-of relations into a subproblem that can be addressed by independent systems. Seven groups participated in each of the two main tasks and four groups in the supporting task. The participating systems indicated advances in the capability of event extraction methods and demonstrated generalization in many aspects: from abstracts to full texts, from previously considered subdomains to new ones, and from the ST'09 extraction targets to other entities and events. The highest performance achieved in the supporting task REL, 58% F-score, is broadly comparable with levels reported for other relation extraction tasks. For the ID task, the highest-performing system achieved 56% F-score, comparable to the state-of-the-art performance at the established ST'09 task. In the EPI task, the best result was 53% F-score for the full set of extraction targets and 69% F-score for a reduced set of core extraction targets, approaching a level of performance sufficient for user-facing applications. In this study, we extend on previously reported results and perform further analyses of the outputs of the participating systems. We place specific emphasis on aspects of system performance relating to real-world applicability, considering alternate evaluation metrics and performing additional manual analysis of system outputs. We further demonstrate that the strengths of extraction systems can be combined to improve on the performance achieved by any system in isolation. The manually annotated corpora, supporting resources, and evaluation tools for all tasks are available from http://www.bionlp-st.org and the tasks continue as open challenges for all interested parties.


Subject(s)
Epigenomics , Information Storage and Retrieval , Natural Language Processing , Protein Processing, Post-Translational , Proteins/metabolism , Communicable Diseases , DNA Methylation , Histone Code , Lipoproteins , Proteins/genetics
8.
IEEE Trans Pattern Anal Mach Intell ; 34(11): 2216-32, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23289130

ABSTRACT

This paper is about supervised and semi-supervised dimensionality reduction (DR) by generating spectral embeddings from multi-output data based on the pairwise proximity information. Two flexible and generic frameworks are proposed to achieve supervised DR (SDR) for multilabel classification. One is able to extend any existing single-label SDR to multilabel via sample duplication, referred to as MESD. The other is a multilabel design framework that tackles the SDR problem by computing weight (proximity) matrices based on simultaneous feature and label information, referred to as MOPE, as a generalization of many current techniques. A diverse set of different schemes for label-based proximity calculation, as well as a mechanism for combining label-based and feature-based weight information by considering information importance and prioritization, are proposed for MOPE. Additionally, we summarize many current spectral methods for unsupervised DR (UDR), single/multilabel SDR, and semi-supervised DR (SSDR) and express them under a common template representation as a general guide to researchers in the field. We also propose a general framework for achieving SSDR by combining existing SDR and UDR models, and also a procedure of reducing the computational cost via learning with a target set of relation features. The effectiveness of our proposed methodologies is demonstrated with experiments with document collections for multilabel text categorization from the natural language processing domain.


Subject(s)
Algorithms , Artificial Intelligence , Electronic Data Processing , Image Interpretation, Computer-Assisted/methods , Natural Language Processing , Pattern Recognition, Automated/methods , Subtraction Technique , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
9.
BMC Bioinformatics ; 12: 481, 2011 Dec 18.
Article in English | MEDLINE | ID: mdl-22177292

ABSTRACT

BACKGROUND: Bio-molecular event extraction from literature is recognized as an important task of bio text mining and, as such, many relevant systems have been developed and made available during the last decade. While such systems provide useful services individually, there is a need for a meta-service to enable comparison and ensemble of such services, offering optimal solutions for various purposes. RESULTS: We have integrated nine event extraction systems in the U-Compare framework, making them intercompatible and interoperable with other U-Compare components. The U-Compare event meta-service provides various meta-level features for comparison and ensemble of multiple event extraction systems. Experimental results show that the performance improvements achieved by the ensemble are significant. CONCLUSIONS: While individual event extraction systems themselves provide useful features for bio text mining, the U-Compare meta-service is expected to improve the accessibility to the individual systems, and to enable meta-level uses over multiple event extraction systems such as comparison and ensemble.


Subject(s)
Data Mining , Computer Systems , Periodicals as Topic , Software
10.
J Biomed Semantics ; 2 Suppl 5: S5, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-22166173

ABSTRACT

BACKGROUND: Event extraction following the GENIA Event corpus and BioNLP shared task models has been a considerable focus of recent work in biomedical information extraction. This work includes efforts applying event extraction methods to the entire PubMed literature database, far beyond the narrow subdomains of biomedicine for which annotated resources for extraction method development are available. RESULTS: In the present study, our aim is to estimate the coverage of all statements of gene/protein associations in PubMed that existing resources for event extraction can provide. We base our analysis on a recently released corpus automatically annotated for gene/protein entities and syntactic analyses covering the entire PubMed, and use named entity co-occurrence, shortest dependency paths and an unlexicalized classifier to identify likely statements of gene/protein associations. A set of high-frequency/high-likelihood association statements are then manually analyzed with reference to the GENIA ontology. CONCLUSIONS: We present a first estimate of the overall coverage of gene/protein associations provided by existing resources for event extraction. Our results suggest that for event-type associations this coverage may be over 90%. We also identify several biologically significant associations of genes and proteins that are not addressed by these resources, suggesting directions for further extension of extraction coverage.

11.
J Biomed Semantics ; 2 Suppl 5: S2, 2011 Oct 06.
Article in English | MEDLINE | ID: mdl-22166595

ABSTRACT

BACKGROUND: We consider the task of automatically extracting DNA methylation events from the biomedical domain literature. DNA methylation is a key mechanism of epigenetic control of gene expression and implicated in many cancers, but there has been little study of automatic information extraction for DNA methylation. RESULTS: We present an annotation scheme for DNA methylation following the representation of the BioNLP shared task on event extraction, select a set of 200 abstracts including a representative sample of all PubMed citations relevant to DNA methylation, and introduce manual annotation for this corpus marking nearly 3000 gene/protein mentions and 1500 DNA methylation and demethylation events. We retrain a state-of-the-art event extraction system on the corpus and find that automatic extraction of DNA methylation events, the methylated genes, and their methylation sites can be performed at 78% precision and 76% recall. CONCLUSIONS: Our results demonstrate that reliable extraction methods for DNA methylation events can be created through corpus annotation and straightforward retraining of a general event extraction system. The introduced resources are freely available for use in research from the GENIA project homepage http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA.

12.
Bioinformatics ; 27(19): 2730-7, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21821664

ABSTRACT

MOTIVATION: Understanding key biological processes (bioprocesses) and their relationships with constituent biological entities and pharmaceutical agents is crucial for drug design and discovery. One way to harvest such information is searching the literature. However, bioprocesses are difficult to capture because they may occur in text in a variety of textual expressions. Moreover, a bioprocess is often composed of a series of bioevents, where a bioevent denotes changes to one or a group of cells involved in the bioprocess. Such bioevents are often used to refer to bioprocesses in text, which current techniques, relying solely on specialized lexicons, struggle to find. RESULTS: This article presents a range of methods for finding bioprocess terms and events. To facilitate the study, we built a gold standard corpus in which terms and events related to angiogenesis, a key biological process of the growth of new blood vessels, were annotated. Statistics of the annotated corpus revealed that over 36% of the text expressions that referred to angiogenesis appeared as events. The proposed methods respectively employed domain-specific vocabularies, a manually annotated corpus and unstructured domain-specific documents. Evaluation results showed that, while a supervised machine-learning model yielded the best precision, recall and F1 scores, the other methods achieved reasonable performance and less cost to develop. AVAILABILITY: The angiogenesis vocabularies, gold standard corpus, annotation guidelines and software described in this article are available at http://text0.mib.man.ac.uk/~mbassxw2/angiogenesis/ CONTACT: xinglong.wang@gmail.com.


Subject(s)
Biological Phenomena , Data Mining/methods , Natural Language Processing , Angiogenesis Inhibitors , Artificial Intelligence , Documentation , Models, Statistical , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Physiologic/genetics , Software , Vocabulary
13.
Metabolomics ; 7(1): 94-101, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21687783

ABSTRACT

Text mining methods have added considerably to our capacity to extract biological knowledge from the literature. Recently the field of systems biology has begun to model and simulate metabolic networks, requiring knowledge of the set of molecules involved. While genomics and proteomics technologies are able to supply the macromolecular parts list, the metabolites are less easily assembled. Most metabolites are known and reported through the scientific literature, rather than through large-scale experimental surveys. Thus it is important to recover them from the literature. Here we present a novel tool to automatically identify metabolite names in the literature, and associate structures where possible, to define the reported yeast metabolome. With ten-fold cross validation on a manually annotated corpus, our recognition tool generates an f-score of 78.49 (precision of 83.02) and demonstrates greater suitability in identifying metabolite names than other existing recognition tools for general chemical molecules. The metabolite recognition tool has been applied to the literature covering an important model organism, the yeast Saccharomyces cerevisiae, to define its reported metabolome. By coupling to ChemSpider, a major chemical database, we have identified structures for much of the reported metabolome and, where structure identification fails, been able to suggest extensions to ChemSpider. Our manually annotated gold-standard data on 296 abstracts are available as supplementary materials. Metabolite names and, where appropriate, structures are also available as supplementary materials. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-010-0251-6) contains supplementary material, which is available to authorized users.

14.
Bioinformatics ; 27(13): i111-9, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21685059

ABSTRACT

MOTIVATION: Discovering useful associations between biomedical concepts has been one of the main goals in biomedical text-mining, and understanding their biomedical contexts is crucial in the discovery process. Hence, we need a text-mining system that helps users explore various types of (possibly hidden) associations in an easy and comprehensible manner. RESULTS: This article describes FACTA+, a real-time text-mining system for finding and visualizing indirect associations between biomedical concepts from MEDLINE abstracts. The system can be used as a text search engine like PubMed with additional features to help users discover and visualize indirect associations between important biomedical concepts such as genes, diseases and chemical compounds. FACTA+ inherits all functionality from its predecessor, FACTA, and extends it by incorporating three new features: (i) detecting biomolecular events in text using a machine learning model, (ii) discovering hidden associations using co-occurrence statistics between concepts, and (iii) visualizing associations to improve the interpretability of the output. To the best of our knowledge, FACTA+ is the first real-time web application that offers the functionality of finding concepts involving biomolecular events and visualizing indirect associations of concepts with both their categories and importance. AVAILABILITY: FACTA+ is available as a web application at http://refine1-nactem.mc.man.ac.uk/facta/, and its visualizer is available at http://refine1-nactem.mc.man.ac.uk/facta-visualizer/. CONTACT: tsuruoka@jaist.ac.jp.


Subject(s)
Artificial Intelligence , Data Mining , Medical Informatics Applications , Internet , MEDLINE , PubMed , United States
15.
Bioinformatics ; 27(8): 1185-6, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21349873

ABSTRACT

UNLABELLED: Often, the most informative genes have to be selected from different gene sets and several computer gene ranking algorithms have been developed to cope with the problem. To help researchers decide which algorithm to use, we developed the analysis of gene ranking algorithms (AGRA) system that offers a novel technique for comparing ranked lists of genes. The most important feature of AGRA is that no previous knowledge of gene ranking algorithms is needed for their comparison. Using the text mining system finding-associated concepts with text analysis. AGRA defines what we call biomedical concept space (BCS) for each gene list and offers a comparison of the gene lists in six different BCS categories. The uploaded gene lists can be compared using two different methods. In the first method, the overlap between each pair of two gene lists of BCSs is calculated. The second method offers a text field where a specific biomedical concept can be entered. AGRA searches for this concept in each gene lists' BCS, highlights the rank of the concept and offers a visual representation of concepts ranked above and below it. AVAILABILITY AND IMPLEMENTATION: Available at http://agra.fzv.uni-mb.si/, implemented in Java and running on the Glassfish server. CONTACT: simon.kocbek@uni-mb.si.


Subject(s)
Algorithms , Genes , Data Mining , Software
16.
J Bioinform Comput Biol ; 8(5): 901-16, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20981894

ABSTRACT

Although there are several corpora with protein annotation, incompatibility between the annotations in different corpora remains a problem that hinders the progress of automatic recognition of protein names in biomedical literature. Here, we report on our efforts to find a solution to the incompatibility issue, and to improve the compatibility between two representative protein-annotated corpora: the GENIA corpus and the GENETAG corpus. In a comparative study, we improve our insight into the two corpora, and a series of experimental results show that most of the incompatibility can be removed.


Subject(s)
Data Mining , Proteins , Computational Biology , PubMed , Terminology as Topic
17.
J Bioinform Comput Biol ; 8(5): 917-28, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20981895

ABSTRACT

Text mining can support the interpretation of the enormous quantity of textual data produced in biomedical field. Recent developments in biomedical text mining include advances in the reliability of the recognition of named entities (NEs) such as specific genes and proteins, as well as movement toward richer representations of the associations of NEs. We argue that this shift in representation should be accompanied by the adoption of a more detailed model of the relations holding between NEs and other relevant domain terms. As a step toward this goal, we study NE-term relations with the aim of defining a detailed, broadly applicable set of relation types based on accepted domain standard concepts for use in corpus annotation and domain information extraction approaches.


Subject(s)
Data Mining , Computational Biology , Data Mining/standards , Genetic Variation , Genomics/statistics & numerical data , Proteomics/statistics & numerical data , Reference Standards , Terminology as Topic
18.
Bioinformatics ; 26(19): 2486-7, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20709690

ABSTRACT

UNLABELLED: Text mining from the biomedical literature is of increasing importance, yet it is not easy for the bioinformatics community to create and run text mining workflows due to the lack of accessibility and interoperability of the text mining resources. The U-Compare system provides a wide range of bio text mining resources in a highly interoperable workflow environment where workflows can very easily be created, executed, evaluated and visualized without coding. We have linked U-Compare to Taverna, a generic workflow system, to expose text mining functionality to the bioinformatics community. AVAILABILITY: http://u-compare.org/taverna.html, http://u-compare.org.


Subject(s)
Data Mining/methods , Computational Biology , Databases, Factual , User-Computer Interface , Workflow
19.
Article in English | MEDLINE | ID: mdl-20671316

ABSTRACT

Currently, relation extraction (RE) and event extraction (EE) are the two main streams of biological information extraction. In 2009, the majority of these RE and EE research efforts were centered around the BioCreative II.5 Protein-Protein Interaction (PPI) challenge and the "BioNLP event extraction shared task." Although these challenges took somewhat different approaches, they share the same ultimate goal of extracting bio-knowledge from the literature. This paper compares the two challenge task definitions, and presents a unified system that was successfully applied in both these and several other PPI extraction task settings. The AkaneRE system has three parts: A core engine for RE, a pool of modules for specific solutions, and a configuration language to adapt the system to different tasks. The core engine is based on machine learning, using either Support Vector Machines or Statistical Classifiers and features extracted from given training data. The specific modules solve tasks like sentence boundary detection, tokenization, stemming, part-of-speech tagging, parsing, named entity recognition, generation of potential relations, generation of machine learning features for each relation, and finally, assignment of confidence scores and ranking of candidate relations. With these components, the AkaneRE system produces state-of-the-art results, and the system is freely available for academic purposes at http://www-tsujii.is.s.u-tokyo.ac.jp/satre/akane/.


Subject(s)
Computational Biology/methods , Data Mining/methods , Natural Language Processing , Protein Interaction Mapping/methods , Algorithms , Databases, Genetic , Information Storage and Retrieval
20.
Trends Biotechnol ; 28(7): 381-90, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20570001

ABSTRACT

Systems biology recognizes in particular the importance of interactions between biological components and the consequences of these interactions. Such interactions and their downstream effects are known as events. To computationally mine the literature for such events, text mining methods that can detect, extract and annotate them are required. This review summarizes the methods that are currently available, with a specific focus on protein-protein interactions and pathway or network reconstruction. The approaches described will be of considerable value in associating particular pathways and their components with higher-order physiological properties, including disease states.


Subject(s)
Data Mining , Documentation , Systems Biology , Gene Regulatory Networks , Periodicals as Topic , Protein Interaction Mapping , PubMed , Signal Transduction , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...