Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4772, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858384

ABSTRACT

The underlying mechanisms of atherosclerosis, the second leading cause of death among Werner syndrome (WS) patients, are not fully understood. Here, we establish an in vitro co-culture system using macrophages (iMφs), vascular endothelial cells (iVECs), and vascular smooth muscle cells (iVSMCs) derived from induced pluripotent stem cells. In co-culture, WS-iMφs induces endothelial dysfunction in WS-iVECs and characteristics of the synthetic phenotype in WS-iVSMCs. Transcriptomics and open chromatin analysis reveal accelerated activation of type I interferon signaling and reduced chromatin accessibility of several transcriptional binding sites required for cellular homeostasis in WS-iMφs. Furthermore, the H3K9me3 levels show an inverse correlation with retrotransposable elements, and retrotransposable element-derived double-stranded RNA activates the DExH-box helicase 58 (DHX58)-dependent cytoplasmic RNA sensing pathway in WS-iMφs. Conversely, silencing type I interferon signaling in WS-iMφs rescues cell proliferation and suppresses cellular senescence and inflammation. These findings suggest that Mφ-specific inhibition of type I interferon signaling could be targeted to treat atherosclerosis in WS patients.


Subject(s)
Atherosclerosis , Inflammation , Interferon Type I , Macrophages , Retroelements , Werner Syndrome , Interferon Type I/metabolism , Werner Syndrome/genetics , Werner Syndrome/metabolism , Humans , Atherosclerosis/metabolism , Atherosclerosis/immunology , Atherosclerosis/genetics , Atherosclerosis/pathology , Macrophages/metabolism , Macrophages/immunology , Retroelements/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/genetics , Induced Pluripotent Stem Cells/metabolism , Signal Transduction , Coculture Techniques , Myocytes, Smooth Muscle/metabolism , Endothelial Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Cellular Senescence , Cell Proliferation
2.
Stem Cell Reports ; 16(12): 2861-2870, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34861163

ABSTRACT

Platelet transfusions are critical for severe thrombocytopenia but depend on blood donors. The shortage of donors and the potential of universal HLA-null platelet products have stimulated research on the ex vivo differentiation of human pluripotent stem cells (hPSCs) to platelets. We recently established expandable immortalized megakaryocyte cell lines (imMKCLs) from hPSCs by transducing MYC, BMI1, and BCL-XL (MBX). imMKCLs can act as cryopreservable master cells to supply platelet concentrates. However, the proliferation rates of the imMKCLs vary with the starting hPSC clone. In this study, we reveal from the gene expression profiles of several MKCL clones that the proliferation arrest is correlated with the expression levels of specific cyclin-dependent kinase inhibitors. Silencing CDKN1A and p53 with the overexpression of MBX was effective at stably inducing imMKCLs that generate functional platelets irrespective of the hPSC clone. Collectively, this improvement in generating imMKCLs should contribute to platelet industrialization and platelet biology.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/metabolism , Gene Silencing , Induced Pluripotent Stem Cells/metabolism , Megakaryocyte Progenitor Cells/metabolism , Tumor Suppressor Protein p53/metabolism , Blood Platelets/metabolism , Cell Line , Cell Proliferation , Clone Cells , Gene Knockdown Techniques , HEK293 Cells , Humans , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Up-Regulation , bcl-X Protein/metabolism
3.
Stem Cell Res ; 53: 102360, 2021 05.
Article in English | MEDLINE | ID: mdl-34087989

ABSTRACT

Adult progeria Werner syndrome (WS), a rare autosomal recessive disorder, is characterized by accelerated aging symptoms after puberty. The causative gene, WRN, is a member of the RecQ DNA helicase family and is predominantly involved in DNA replication, repair, and telomere maintenance. Here, we report the generation of iPS cells from a patient with WS and correction of the WRN gene by the CRISPR/Cas9-mediated method. These iPSC lines would be a valuable resource for deciphering the pathogenesis of WS.


Subject(s)
Induced Pluripotent Stem Cells , Werner Syndrome , Adult , CRISPR-Cas Systems/genetics , Exodeoxyribonucleases/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Werner Syndrome/genetics , Werner Syndrome Helicase/genetics , Werner Syndrome Helicase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...