Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 621: 157-161, 2022 09 17.
Article in English | MEDLINE | ID: mdl-35839742

ABSTRACT

Fibrolamellar hepatocellular carcinoma (FL-HCC) is known as a highly aggressive liver cancer that typically affects young adults without virus infection. Since this type of cancer does not respond to chemotherapy, surgery is the only known effective therapeutic option. Most FL-HCC patients express the fusion gene DNAJB1-PRKACA, which has been recognized as the signature of FL-HCC. It has also been reported that PRKACA kinase activity is essential for its oncogenic activity, suggesting that PRKACA kinase inhibition could be considered as an useful therapeutic target. In this study, we established an evaluation system for PRKACA kinase inhibitors and synthesized DS89002333, a novel PRKACA inhibitor. DS89002333 showed potent PRKACA inhibitory activity and inhibited fusion protein-dependent cell growth both in vitro and in vivo. Furthermore, this compound showed anti-tumor activity in an FL-HCC patient-derived xenograft model expressing the DNAJB1-PRKACA fusion gene. Our data suggest that DS89002333 could be considered as a potential therapeutic agent for FL-HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Catalytic Domain , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Gene Expression Regulation, Neoplastic , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Protein Kinase Inhibitors , Young Adult
2.
ACS Med Chem Lett ; 10(3): 358-362, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30891140

ABSTRACT

Derivatization efforts were continued to discover backups for a potent selective PPARγ modulator, DS-6930. In this Letter, the replacement of 2-pyridine ring in DS-6930 with 3- or 4-pyridyl group is reported. As the introduction of substituents on the pyridine ring did not provide potent partial agonists, modifications of benzimidazole ring were explored to discover potent intermediate agonists. 4'-Alkoxy substituted benzimidazoles failed to show potent efficacy in vivo, whereas 7'-fluoro benzimidazole 3g (DS19161384) was found to result in robust plasma glucose reductions with excellent DMPK profiles.

3.
Bioorg Med Chem ; 26(18): 5099-5117, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30220602

ABSTRACT

Attempts were made to reduce the lipophilicity of previously synthesized compound (II) for the avoidance of hepatotoxicity. The replacement of the left-hand side benzene with 2-pyridine resulted in the substantial loss of potency. Because poor membrane permeability was responsible for poor potency in vitro, the adjustment of lipophilicity was examined, which resulted in the discovery of dimethyl pyridine derivative (I, DS-6930). In preclinical studies, DS-6930 demonstrated high PPARγ agonist potency with robust plasma glucose reduction. DS-6930 maintained diminished PPARγ-related adverse effects upon toxicological evaluation in vivo, and demonstrated no hepatotoxicity. Cofactor recruitment assay showed that several cofactors, such as RIP140 and PGC1, were significantly recruited, whereas several canonical factors was not affected. This selective cofactor recruitment was caused due to the distinct binding mode of DS-6930. The calcium salt, DS-6930b, which is expected to be an effective inducer of insulin sensitization without edema, could be evaluated clinically in T2DM patients.


Subject(s)
Drug Discovery , Hypoglycemic Agents/pharmacology , PPAR gamma/agonists , Pyridines/pharmacology , Administration, Oral , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Female , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry , Macaca fascicularis , Male , Models, Molecular , Molecular Structure , PPAR gamma/metabolism , Pyridines/administration & dosage , Pyridines/chemistry , Rats , Rats, Inbred F344 , Rats, Zucker , Structure-Activity Relationship
4.
Bioorg Med Chem ; 26(18): 5079-5098, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30241907

ABSTRACT

The lead identification of a novel potent selective PPARγ agonist, DS-6930 is reported. To avoid PPARγ-related adverse effects, a partial agonist was designed to prevent the direct interaction with helix 12 of PPARγ-LBD. Because the TZD group is known to interact with helix 12, the TZD in efatutazone (CS-7017) was replaced to discover novel PPARγ intermediate partial agonist 8i. The optimization of 8i yielded 13ac with high potency in vitro. Compound 13ac exhibited robust plasma glucose lowering effects comparable to those of rosiglitazone (3 mg/kg) in Zucker diabetic fatty rats. Upon toxicological evaluation, compound 13ac (300 mg/kg) induced hemodilution to a lower extent than rosiglitazone; however, 13ac elevated liver enzyme activities. X-ray crystallography revealed no direct interaction of 13ac with helix 12, and the additional lipophilic interactions are also suggested to be related to the maximum transcriptional activity of 13ac.


Subject(s)
Drug Discovery , Hypoglycemic Agents/pharmacology , PPAR gamma/agonists , Administration, Oral , Animals , COS Cells , Chlorocebus aethiops , Crystallography, X-Ray , Dose-Response Relationship, Drug , Female , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry , Macaca fascicularis , Male , Mice , Mice, Inbred Strains , Models, Molecular , Molecular Structure , PPAR gamma/metabolism , Rats , Rats, Wistar , Rats, Zucker , Structure-Activity Relationship
5.
Bioorg Med Chem ; 18(14): 5346-51, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20542703

ABSTRACT

With the aim of exploring the effect of tricyclic-based FBPase inhibitors in cells and in vivo, a series of prodrugs of tricyclic phosphonates was designed and synthesized. Introducing prodrug moieties into tricyclic-based phosphonates led to the discovery of prodrug 15c, which strongly inhibited glucose production in monkey hepatocytes. Furthermore, prodrug 15c lowered blood glucose levels in fasted cynomolgus monkeys.


Subject(s)
Fructose-Bisphosphatase/antagonists & inhibitors , Fructose-Bisphosphatase/metabolism , Glucose/antagonists & inhibitors , Organophosphonates/pharmacology , Prodrugs/pharmacology , Administration, Oral , Animals , Blood Glucose/metabolism , Cells, Cultured , Crystallography, X-Ray , Diabetes Mellitus, Type 2/drug therapy , Drug Design , Fructose-Bisphosphatase/chemistry , Hepatocytes/metabolism , Humans , Macaca fascicularis , Models, Molecular , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Prodrugs/chemical synthesis , Prodrugs/chemistry
7.
Bioorg Med Chem Lett ; 20(3): 1004-7, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20045638

ABSTRACT

With the goal of improving metabolic stability and further enhancing FBPase inhibitory activity, a series of tricyclic 8H-indeno[1,2-d][1,3]thiazoles was designed and synthesized with the aid of structure-based drug design. Extensive SAR studies led to the discovery of 19a with an IC(50) value of 1nM against human FBPase. X-ray crystallographic studies revealed that high affinity of 19a was due to the hydrophobic interaction arising from better shape complementarity and to the hydrogen bonding network involving the side chain on the tricyclic scaffold.


Subject(s)
Drug Design , Fructose-Bisphosphatase/antagonists & inhibitors , Thiazoles/chemical synthesis , Thiazoles/pharmacology , Crystallography, X-Ray , Fructose-Bisphosphatase/chemistry , Fructose-Bisphosphatase/metabolism , Humans , Structure-Activity Relationship
8.
SELECTION OF CITATIONS
SEARCH DETAIL
...