Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 5(3): 310-9, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19733542

ABSTRACT

Infantile neuronal ceroid lipofuscinosis (INCL) is a fatal neurodegenerative disease caused by a deficiency in the lysosomal enzyme palmitoyl protein thioesterase-1 (PPT1). Ppt1 knockout mice display hallmarks of INCL and mimic the human pathology: accumulation of lipofuscin, degeneration of CNS neurons, and a shortened life span. Purified non-genetically modified human CNS stem cells, grown as neurospheres (hCNS-SCns), were transplanted into the brains of immunodeficient Ppt1(-/)(-) mice where they engrafted robustly, migrated extensively, and produced sufficient levels of PPT1 to alter host neuropathology. Grafted mice displayed reduced autofluorescent lipofuscin, significant neuroprotection of host hippocampal and cortical neurons, and delayed loss of motor coordination. Early intervention with cellular transplants of hCNS-SCns into the brains of INCL patients may supply a continuous and long-lasting source of the missing PPT1 and provide some therapeutic benefit through protection of endogenous neurons. These data provide the experimental basis for human clinical trials with these banked hCNS-SCns.


Subject(s)
Central Nervous System/cytology , Cytoprotection , Neuronal Ceroid-Lipofuscinoses/pathology , Neuronal Ceroid-Lipofuscinoses/therapy , Neurons/cytology , Stem Cells/cytology , Animals , Brain/enzymology , Brain/pathology , Cell Differentiation , Cell Movement , Cell Survival , Disease Models, Animal , Endocytosis , Fibroblasts/cytology , Fibroblasts/enzymology , Fluorescence , Humans , Inflammation/complications , Inflammation/pathology , Intracellular Space/enzymology , Lipofuscin/metabolism , Mice , Motor Activity , Mutation/genetics , Nerve Degeneration/complications , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Neuronal Ceroid-Lipofuscinoses/complications , Neuronal Ceroid-Lipofuscinoses/physiopathology , Neurons/enzymology , Receptor, IGF Type 2/metabolism , Stem Cell Transplantation , Stem Cells/metabolism , Thiolester Hydrolases/deficiency , Thiolester Hydrolases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...