Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 107(43): 18392-7, 2010 Oct 26.
Article in English | MEDLINE | ID: mdl-20930119

ABSTRACT

Rare circulating tumor cells (CTCs) present in the bloodstream of patients with cancer provide a potentially accessible source for detection, characterization, and monitoring of nonhematological cancers. We previously demonstrated the effectiveness of a microfluidic device, the CTC-Chip, in capturing these epithelial cell adhesion molecule (EpCAM)-expressing cells using antibody-coated microposts. Here, we describe a high-throughput microfluidic mixing device, the herringbone-chip, or "HB-Chip," which provides an enhanced platform for CTC isolation. The HB-Chip design applies passive mixing of blood cells through the generation of microvortices to significantly increase the number of interactions between target CTCs and the antibody-coated chip surface. Efficient cell capture was validated using defined numbers of cancer cells spiked into control blood, and clinical utility was demonstrated in specimens from patients with prostate cancer. CTCs were detected in 14 of 15 (93%) patients with metastatic disease (median = 63 CTCs/mL, mean = 386 ± 238 CTCs/mL), and the tumor-specific TMPRSS2-ERG translocation was readily identified following RNA isolation and RT-PCR analysis. The use of transparent materials allowed for imaging of the captured CTCs using standard clinical histopathological stains, in addition to immunofluorescence-conjugated antibodies. In a subset of patient samples, the low shear design of the HB-Chip revealed microclusters of CTCs, previously unappreciated tumor cell aggregates that may contribute to the hematogenous dissemination of cancer.


Subject(s)
Cell Separation/instrumentation , Microfluidic Analytical Techniques/instrumentation , Neoplastic Cells, Circulating/pathology , Base Sequence , Biomedical Engineering , Cell Aggregation , Cell Line, Tumor , DNA, Neoplasm/genetics , DNA, Neoplasm/isolation & purification , Humans , Lung Neoplasms/blood , Male , Oncogene Proteins, Fusion/genetics , Prostatic Neoplasms/blood , Prostatic Neoplasms/genetics , Prostatic Neoplasms/secondary
2.
Sci Transl Med ; 2(25): 25ra23, 2010 Mar 31.
Article in English | MEDLINE | ID: mdl-20424012

ABSTRACT

Rare circulating tumor cells (CTCs) are present in the blood of patients with metastatic epithelial cancers but have been difficult to measure routinely. We report a quantitative automated imaging system for analysis of prostate CTCs, taking advantage of prostate-specific antigen (PSA), a unique prostate tumor-associated marker. The specificity of PSA staining enabled optimization of criteria for baseline image intensity, morphometric measurements, and integration of multiple signals in a three-dimensional microfluidic device. In a pilot analysis, we detected CTCs in prostate cancer patients with localized disease, before surgical tumor removal in 8 of 19 (42%) patients (range, 38 to 222 CTCs per milliliter). For 6 of the 8 patients with preoperative CTCs, a precipitous postoperative decline (<24 hours) suggests a short half-life for CTCs in the blood circulation. Other patients had persistent CTCs for up to 3 months after prostate removal, suggesting early but transient disseminated tumor deposits. In patients with metastatic prostate cancer, CTCs were detected in 23 of 36 (64%) cases (range, 14 to 5000 CTCs per milliliter). In previously untreated patients followed longitudinally, the numbers of CTCs declined after the initiation of effective therapy. The prostate cancer-specific TMPRSS2-ERG fusion was detectable in RNA extracted from CTCs from 9 of 20 (45%) patients with metastatic disease, and dual staining of captured CTCs for PSA and the cell division marker Ki67 indicated a broad range for the proportion of proliferating cells among CTCs. This method for analysis of CTCs will facilitate the application of noninvasive tumor sampling to direct targeted therapies in advanced prostate cancer and warrants the initiation of long-term clinical studies to test the importance of CTCs in invasive localized disease.


Subject(s)
Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms/pathology , Diagnostic Imaging , Female , Humans , Male , Prostate-Specific Antigen/blood , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...