Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Toxicon ; : 107848, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964619

ABSTRACT

Ciguatera poisoning (CP), caused by ciguatoxins (CTXs), is one of the most common food-borne diseases, affecting more than 50,000 people each year. In most cases, CP are managed with symptomatic and supportive remedies, and no specific treatment has been devised. In this study, toward the development of therapeutic antibodies for CP, we examined to humanize mouse anti-CTX3C antibody 10C9 (m10C9), which exhibited neutralizing activity against ciguatoxin in vitro and in vivo. The complementarity determining regions were grafted onto a human germline sequence with high sequence identity to m10C9, and the backmutations were examined to maintain the binding affinity. The optimized humanized antibody, Opt.h10C9Fab, showed a strong binding affinity to CTX3C with a high affinity (KD = 19.0 nM), and only two backmutations of ArgL46 and CysH94 in the framework regions were involved in determining the antigen binding affinity.

2.
Toxins (Basel) ; 16(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38535783

ABSTRACT

Ciguatoxins (CTXs) are neurotoxins responsible for ciguatera poisoning (CP), which affects more than 50,000 people worldwide annually. The development of analytical methods to prevent CP is a pressing global issue, and the N2a assay is one of the most promising methods for detecting CTXs. CTXs are highly toxic, and an action level of 0.01 µg CTX1B equivalent (eq)/kg in fish has been proposed. It is desirable to further increase the detection sensitivity of CTXs in the N2a assay to detect such low concentrations reliably. The opening of voltage-gated sodium channels (NaV channels) and blocking of voltage-gated potassium channels (KV channels) are thought to be involved in the toxicity of CTXs. Therefore, in this study, we developed an assay that could detect CTXs with higher sensitivity than conventional N2a assays, using KV channel inhibitors as sensitizing reagents for N2a cells. The addition of the KV channel inhibitors 4-aminopyridine and tetraethylammonium chloride to N2a cells, in addition to the traditional sensitizing reagents ouabain and veratridine, increased the sensitivity of N2a cells to CTXs by up to approximately 4-fold. This is also the first study to demonstrate the influence of KV channels on the toxicity of CTXs in a cell-based assay.


Subject(s)
Ciguatera Poisoning , Ciguatoxins , Neuroblastoma , Potassium Channels, Voltage-Gated , Humans , Animals , Aminopyridines
3.
Toxicon ; 230: 107161, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37201801

ABSTRACT

Ciguatera fish poisoning (CFP) is a foodborne illness affecting > 50,000 people worldwide annually. It is caused by eating marine invertebrates and fish that have accumulated ciguatoxins (CTXs). Recently, the risk of CFP to human health, the local economy, and fishery resources have increased; therefore, detection methods are urgently needed. Functional assays for detecting ciguatoxins in fish include receptor binding (RBA) and neuroblastoma cell-based assay (N2a assay), which can detect all CTX congeners. In this study, we made these assays easier to use. For RBA, an assay was developed using a novel near-infrared fluorescent ligand, PREX710-BTX, to save valuable CTXs. In the N2a assay, a 1-day assay was developed with the same detection performance as the conventional 2-day assay. Additionally, in these assays, we used calibrated CTX standards from the Pacific determined by quantitative NMR for the first time to compare the relative potency of congeners, which differed significantly among previous studies. In the RBA, there was almost no difference in the binding affinity among congeners, showing that the differences in side chains, stereochemistry, and backbone structure of CTXs did not affect the binding affinity. However, this result did not correlate with the toxic equivalency factors (TEFs) based on acute toxicity in mice. In contrast, the N2a assay showed a good correlation with TEFs based on acute toxicity in mice, except for CTX3C. These findings, obtained with calibrated toxin standards, provide important insights into evaluating the total toxicity of CTXs using functional assays.


Subject(s)
Ciguatera Poisoning , Ciguatoxins , Neuroblastoma , Mice , Humans , Animals , Ciguatoxins/toxicity , Protein Binding , Fishes
4.
Harmful Algae ; 120: 102353, 2022 12.
Article in English | MEDLINE | ID: mdl-36470608

ABSTRACT

Dinoflagellates of the genera Gambierdiscus and Fukuyoa are able to produce potent neurotoxins like ciguatoxins (CTXs), which, after biooxidation in fish, are responsible for ciguatera intoxication. An isolate of G. australes from the Canary Islands, that revealed the presence of CTX-like compounds by immunosensing tools, was studied by immunocytochemistry to localize intracellular CTX-like compounds, using 8H4 monoclonal antibody that specifically recognizes the right wing of CTX1B and CTX3C analogues. Confocal microscopy observations of immunostained whole cells revealed a strong positive reaction on cell surface and all along the cell outline, while no reaction was detected inside the cells, probably because the antibody was not able to pass through thecal plates. Cell sections showed a positive antibody staining not only on thecal plates, but also inside cytoplasm, with numerous small dots and larger tubule-like reticulate structures. Small fluorescent dots were detected also on the nuclear surface. These observations indicate that CTX-like compounds are present in G. australes cytoplasm, and then are, at least in part, released to cover the cell surface.


Subject(s)
Ciguatera Poisoning , Ciguatoxins , Dinoflagellida , Animals , Dinoflagellida/chemistry , Spain , Microscopy, Confocal
5.
Sci Total Environ ; 806(Pt 4): 150915, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34653452

ABSTRACT

Several genera of marine dinoflagellates are known to produce bioactive compounds that affect human health. Among them, Gambierdiscus and Fukuyoa stand out for their ability to produce several toxins, including the potent neurotoxic ciguatoxins (CTXs), which accumulate through the food web. Once fishes contaminated with CTXs are ingested by humans, it can result in an intoxication named ciguatera. Within the two genera, only some species are able to produce toxins, and G. australes and G. excentricus have been highlighted to be the most abundant and toxic. Although the genera Gambierdiscus and Fukuyoa are endemic to tropical areas, their presence in subtropical and temperate regions has been recently recorded. In this work, the combined use of species-specific PCR primers for G. australes and G. excentricus modified with short oligonucleotide tails allowed the development of a multiplex detection system for these two toxin-producing species. Simultaneous detection was achieved using capture probes specific for G. australes and G. excentricus immobilized on maleimide-coated magnetic beads (MBs), separately placed on the working electrodes of a dual electrode array. Additionally, a rapid DNA extraction technique based on a portable bead beater system and MBs was developed, significantly reducing the extraction time (from several hours to 30 min). The developed technique was able to detect as low as 10 cells of both Gambierdiscus species and allowed the first detection of G. excentricus in the Balearic Islands in 8 out of the 12 samples analyzed. Finally, field samples were screened for CTXs with an immunosensor, successfully reporting 13.35 ± 0.5 pg CTX1B equiv. cell-1 in one sample and traces of toxins in 3 out of the 9 samples analyzed. These developments provide rapid and cost-effective strategies for ciguatera risk assessment, with the aim of guaranteeing seafood safety.


Subject(s)
Biosensing Techniques , Ciguatoxins , Dinoflagellida , Humans , Immunoassay , Spain
6.
Food Chem ; 374: 131687, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-34891085

ABSTRACT

Ciguatoxins (CTXs) are marine neurotoxins produced by microalgae of the genera Gambierdiscus and Fukuyoa. CTXs may reach humans through food webs and cause ciguatera fish poisoning (CFP). An immunosensor for the detection of Pacific CTXs in fish was developed using multiwalled carbon nanotube (MWCNT)-modified carbon electrodes and a smartphone-controlled potentiostat. The biosensor attained a limit of detection (LOD) and a limit of quantification (LOQ) of 6 and 27 pg/mL of CTX1B, respectively, which were 0.001 and 0.005 µg/kg in fish flesh. In the analysis of fish samples from Japan and Fiji, excellent correlations were found with sandwich enzyme-linked immunosorbent assays (ELISAs), a cell-based assay (CBA) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Stability of at least 3 months at -20 °C was predicted. In just over 2 h, the biosensor provides reliable, accurate and precise Pacific CTX contents in fish extracts, being suitable for monitoring and research programs.


Subject(s)
Biosensing Techniques , Ciguatoxins , Animals , Chromatography, Liquid , Ciguatoxins/analysis , Humans , Immunoassay , Smartphone , Tandem Mass Spectrometry
7.
Chembiochem ; 22(24): 3406-3409, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34605137

ABSTRACT

Conformationally constrained peptides hold promise as molecular tools in chemical biology and as a new modality in drug discovery. The construction and screening of a target-focused library could be a promising approach for the generation of de novo ligands or inhibitors against target proteins. Here, we have prepared a protein kinase-focused library by chemically modifying helix-loop-helix (HLH) peptides displayed on phage and subsequently tethered to adenosine. The library was screened against aurora kinase A (AurA). The selected HLH peptide Bip-3 retained the α-helical structure and bound to AurA with a KD value of 13.7 µM. Bip-3 and the adenosine-tethered peptide Bip-3-Adc provided IC50 values of 103 µM and 7.7 µM, respectively, suggesting that Bip-3-Adc bivalently inhibited AurA. In addition, the selectivity of Bip-3-Adc to several protein kinases was tested, and was highest against AurA. These results demonstrate that chemical modification can enable the construction of a kinase-focused library of phage-displayed HLH peptides.


Subject(s)
Aurora Kinase A/metabolism , Peptides/pharmacology , Protein Kinase Inhibitors/pharmacology , Humans , Peptide Library , Peptides/chemistry , Protein Conformation , Protein Kinase Inhibitors/chemistry
8.
Toxins (Basel) ; 12(11)2020 10 31.
Article in English | MEDLINE | ID: mdl-33142836

ABSTRACT

Ciguatera Poisoning (CP) is a human food-borne poisoning that has been known since ancient times to be found mainly in tropical and subtropical areas, which occurs when fish or very rarely invertebrates contaminated with ciguatoxins (CTXs) are consumed. The genus of marine benthic dinoflagellates Gambierdiscus produces CTX precursors. The presence of Gambierdiscus species in a region is one indicator of CP risk. The Canary Islands (North Eastern Atlantic Ocean) is an area where CP cases have been reported since 2004. In the present study, samplings for Gambierdiscus cells were conducted in this area during 2016 and 2017. Gambierdiscus cells were isolated and identified as G. australes, G. excentricus, G. caribaeus, and G. belizeanus by molecular analysis. In this study, G. belizeanus is reported for the first time in the Canary Islands. Gambierdiscus isolates were cultured, and the CTX-like toxicity of forty-one strains was evaluated with the neuroblastoma cell-based assay (neuro-2a CBA). G. excentricus exhibited the highest CTX-like toxicity (9.5-2566.7 fg CTX1B equiv. cell-1) followed by G. australes (1.7-452.6.2 fg CTX1B equiv. cell-1). By contrast, the toxicity of G. belizeanus was low (5.6 fg CTX1B equiv. cell-1), and G. caribaeus did not exhibit CTX-like toxicity. In addition, for the G. belizeanus strain, the production of CTXs was evaluated with a colorimetric immunoassay and an electrochemical immunosensor resulting in G. belizeanus producing two types of CTX congeners (CTX1B and CTX3C series congeners) and can contribute to CP in the Canary Islands.


Subject(s)
Ciguatoxins/toxicity , Dinoflagellida/metabolism , Neurons/drug effects , Animals , Atlantic Ocean , Cell Line, Tumor , Cell Survival/drug effects , Ciguatoxins/metabolism , Dinoflagellida/classification , Ecosystem , Mice , Neurons/pathology , Phylogeny , Seawater , Spain
9.
Anal Chem ; 92(7): 4858-4865, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32133843

ABSTRACT

The importance of ciguatoxins (CTXs) in seafood safety and their emerging occurrence in locations far away from tropical areas highlight the need for simple and low-cost methods for the sensitive and rapid detection of these potent marine toxins to protect seafood consumers. Herein, an electrochemical immunosensor for the detection of CTXs is presented. A sandwich configuration is proposed, using magnetic beads (MBs) as immobilization supports for two capture antibodies, with their combination facilitating the detection of CTX1B, CTX3C, 54-deoxyCTX1B, and 51-hydroxyCTX3C. PolyHRP-streptavidin is used for the detection of the biotinylated detector antibody. Experimental conditions are first optimized using colorimetry, and these conditions are subsequently used for electrochemical detection on electrode arrays. Limits of detection at the pg/mL level are achieved for CTX1B and 51-hydroxyCTX3C. The applicability of the immunosensor to the analysis of fish samples is demonstrated, attaining detection of CTX1B at contents as low as 0.01 µg/kg and providing results in correlation with those obtained using mouse bioassay (MBA) and cell-based assay (CBA), and confirmed by liquid chromatography coupled to high-resolution mass spectrometry (LC-ESI-HRMS). This user-friendly bioanalytical tool for the rapid detection of CTXs can be used to mitigate ciguatera risk and contribute to the protection of consumer health.


Subject(s)
Biosensing Techniques , Ciguatoxins/analysis , Electrochemical Techniques , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Chromatography, Liquid , Ciguatoxins/administration & dosage , Ciguatoxins/immunology , Fishes , Injections, Intraperitoneal , Magnetic Phenomena , Male , Mice , Spectrometry, Mass, Electrospray Ionization
10.
Toxins (Basel) ; 11(9)2019 09 13.
Article in English | MEDLINE | ID: mdl-31540301

ABSTRACT

"Ciguatera" fish poisoning (CFP) is one of the well-known food poisoning caused by the ingestion of fish that have accumulated trace amounts of ciguatoxins (CTXs). CFP affects more than 50,000 individuals annually. The difficulty in preventing CFP comes from the lack of reliable methods for analysis of CTXs in contaminated fish, together with the normal appearance, taste, and smell of CTX-contaminated fish. Thus, a sensitive, accurate, routine, and portable analytical method to detect CTXs is urgently required. Monoclonal antibodies (mAbs) specific against either wing of major CTX congeners (CTX1B, 54-deoxyCTX1B, CTX3C, and 51-hydroxyCTX3C) were generated by immunizing mice with rationally designed synthetic haptens-KLH conjugates instead of the CTXs. Haptenic groups with a surface area greater than 400 Å2 are required to produce mAbs that can strongly bind to CTXs. Furthermore, a highly sensitive fluorescence-based sandwich enzyme-linked immunosorbent assay (ELISA) was developed. This protocol can detect and quantify four major CTX congeners (CTX1B, 54-deoxyCTX1B, CTX3C, and 51-hydroxyCTX3C) with a limit of detection (LOD) of less than 1 pg/mL. The LOD determined for this sandwich ELISA is sufficient to detect CTX1B-contaminated fish at the FDA guidance level of 0.01 ppb.


Subject(s)
Antibodies, Monoclonal/immunology , Ciguatoxins/analysis , Haptens/immunology , Animals , Ciguatoxins/immunology , Enzyme-Linked Immunosorbent Assay , Food Contamination/analysis , Limit of Detection , Perciformes
11.
Anal Chem ; 90(12): 7318-7324, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29770692

ABSTRACT

Ciguatera fish poisoning (CFP) caused by the consumption of fish that have accumulated ciguatoxins (CTXs) affects more than 50000 people annually. The spread of CFP causes enormous damage to public health, fishery resources, and the economies of tropical and subtropical endemic regions. The difficulty in avoiding CFP arises from the lack of sensitive and reliable analytical methods for the detection and quantification of CTXs in contaminated fish, along with the normal appearance, smell, and taste of fish contaminated with the causative toxins. Thus, an accurate, sensitive, routine, and portable detection method for CTXs is urgently required. We have successfully developed a highly sensitive fluorescent sandwich ELISA, which can detect, differentiate, and quantify four major CTX congeners (CTX1B, CTX3C, 51-hydroxyCTX3C, and 54-deoxyCTX1B) with a detection limit of less than 1 pg/mL. The ELISA protocol, using one microtiter plate coated with two mAbs (10C9 and 3G8), and ALP-linked 8H4, can detect any of the four CTX congeners in a single operation. CTX1B spiked into fish at the FDA guidance level of 0.01 ppb CTX1B equivalent toxicity in fish from Pacific regions was also proven to be reliably detected by this ELISA. Furthermore, the efficiency of extraction/purification procedures and the matrix effect of contaminants in fish were evaluated in detail, since pretreatment and matrix effects are critical for ELISA analysis.


Subject(s)
Ciguatera Poisoning/prevention & control , Ciguatoxins/analysis , Enzyme-Linked Immunosorbent Assay/methods , Animals , Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay/standards , Fishes , Humans , Limit of Detection , Seafood/poisoning
12.
Bioorg Med Chem ; 26(8): 1412-1417, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29496413

ABSTRACT

Catalytic antibody 7B9, which was elicited against p-nitrobenzyl phosphonate transition-state analogue (TSA) 1, hydrolyzes a wide range of p-nitrobenzyl monoesters and thus shows broad substrate tolerance. To reveal the molecular basis of this substrate tolerance, the 7B9 Fab fragment complexed with p-nitrobenzyl ethylphosphonate 2 was crystallized and the three-dimensional structure was determined. The crystal structure showed that the strongly antigenic p-nitrobenzyl moiety occupied a relatively shallow antigen-combining site and therefore the alkyl moiety was located outside the pocket. These results support the observed broad substrate tolerance of 7B9 and help rationalize how 7B9 can catalyze various p-nitrobenzyl ester derivatives. The crystal structure also showed that three amino acid residues (AsnH33, SerH95, and ArgL96) were placed in key positions to form hydrogen bonds with the phosphonate oxygens of the transitions-state analogue. In addition, the role of these amino acid residues was examined by site-directed mutagenesis to alanine: all mutants (AsnH33Ala, SerH95Ala, and ArgL96Ala) showed no detectable catalytic activity. Coupling the findings from our structural studies with these mutagenesis results clarified the structural basis of the observed broad substrate tolerance of antibody 7B9-catalyzed hydrolyses. Our findings provide new strategies for the generation of catalytic antibodies that accept a broad range of substrates, aiding their practical application in synthetic organic chemistry.


Subject(s)
Antibodies, Catalytic/metabolism , Esters/metabolism , Nitrobenzenes/metabolism , Biocatalysis , Esters/chemistry , Hydrolysis , Models, Molecular , Molecular Structure , Nitrobenzenes/chemistry , Structure-Activity Relationship
13.
Biophys Physicobiol ; 13: 135-138, 2016.
Article in English | MEDLINE | ID: mdl-27924267

ABSTRACT

We analyzed the correlation between the conformational strain and the binding kinetics in antigen-antibody interactions. The catalytic antibodies 6D9, 9C10, and 7C8 catalyze the hydrolysis of a nonbioactive chloramphenicol monoester derivative to generate a bioactive chloramphenicol. The crystal structure of 6D9 complexed with a transition-state analog (TSA) suggests that 6D9 binds the substrate to change the conformation of the ester moiety to a thermodynamically unstable twisted conformation, enabling the substrate to reach the transition state during catalysis. The present binding kinetic analysis showed that the association rate for 6D9 binding to the substrate was much lower than that to TSA, whereas those for 9C10 and 7C8 binding were similar to those to TSA. Considering that 7C8 binds to the substrate with little conformational change in the substrate, the slow association rate observed in 6D9 could be attributed to the conformational strain in the substrate.

14.
ACS Chem Biol ; 11(10): 2803-2811, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27552288

ABSTRACT

Taking advantage of antibody molecules to generate tailor-made binding sites, we propose a new class of protein modifications, termed as "site-directed chemical mutation." In this modification, chemically synthesized catalytic components with a variety of steric and electronic properties can be noncovalently and nongenetically incorporated into specific sites in antibody molecules to induce enzymatic activity. Two catalytic antibodies, 25E2 and 27C1, possess antigen-combining sites which bind catalytic components and act as apoproteins in catalytic reactions. By simply exchanging these components, antibodies 25E2 and 27C1 can catalyze a wide range of chemical transformations including acyl-transfer, ß-elimination, aldol, and decarboxylation reactions. Although both antibodies were generated with the same hapten, phosphonate diester 1, they showed different catalytic activity. When phenylacetic acid 4 was used as the catalytic component, 25E2 efficiently catalyzed the elimination reaction of ß-haloketone 2, whereas 27C1 showed no catalytic activity. In this work, we focused on the ß-elimination reaction and examined the site-directed chemical mutation of 27C1 to induce activity and elucidate the catalytic mechanism. Molecular models showed that the cationic guanidyl group of ArgH52 in 27C1 makes a hydrogen bond with the P═O oxygen in the hapten. This suggested that during ß-elimination, ArgH52 of 27C1 would form a salt bridge with the carboxylate of 4, thus destroying reactivity. Therefore, we utilized site-directed chemical mutation to change the charge properties of the catalytic components. When amine components 7-10 were used, 27C1 efficiently catalyzed the ß-elimination reaction. It is noteworthy that chemical mutation with secondary amine 8 provided extremely high activity, with a rate acceleration [(kcat/Km 2)/kuncat] of 1 000 000. This catalytic activity likely arises from the proximity effect, plus general-base catalysis associated the electrostatic interactions. In 27C1, the cationic guanidyl group of ArgH52 is spatially close to the nitrogen of the amine components. In this microenvironment, the intrinsic pKa of the amine is perturbed and shifts to a lower pKa, which efficiently abstracts the α-proton during the reaction. This mechanism is consistent with the observed kinetic isotope effect (E2 or E1cB mechanism). Thus, site-directed chemical mutation provides a better understanding of enzyme functions and opens new avenues in biocatalyst research.


Subject(s)
Antibodies, Catalytic/chemistry , Mutagenesis, Site-Directed , Antibodies, Catalytic/genetics , Antibodies, Catalytic/metabolism , Catalysis , Cloning, Molecular , Kinetics
15.
J AOAC Int ; 97(2): 373-9, 2014.
Article in English | MEDLINE | ID: mdl-24830148

ABSTRACT

Ciguatera fish poisoning (CFP) is a form of food poisoning caused by the consumption of fish that have accumulated a type of sodium channel activator toxin called ciguatoxins (CTXs), which are produced by dinoflagellates of the genus Gambierdiscus through the food chain. CFP affects more than 50000 people each year. The extremely low level of CTXs in tainted fish has hampered the development of antibodies for the detection of these toxins. Monoclonal antibodies (mAbs) specific against major congeners of CTX3C, 51-hydroxyCTX3C, CTX1B, and 54-deoxyCTX1B were prepared by immunization of mice with protein conjugates of rationally designed synthetic haptens in place of the natural toxins. We found that haptenic groups possessing a surface area larger than 400 angstroms2 were required to produce mAbs that can bind strongly to CTXs. Direct sandwich ELISA utilizing two different monoclonal antibodies that bind specifically to one of the two wings of a CTX were established to detect CTXs. No cross-reactivity was observed against the other marine toxins tested, including brevetoxin A, brevetoxin B, okadaic acid, and maitotoxin.


Subject(s)
Antibodies, Monoclonal/chemistry , Ciguatoxins/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Haptens , Animals , Antibody Affinity , Antibody Specificity , Binding Sites , Mice , Molecular Structure , Protein Binding
16.
Bioorg Med Chem ; 21(22): 7011-7, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24094435

ABSTRACT

Catalytic antibody 27C1 bears binding sites for both a substrate- and a functionalized small nonprotein component in the active site. We investigated the possibility of exploiting imine and enamine intermediates using a primary amine molecule into the active site of antibody 27C1. The antibody catalyzed ß-keto acid decarboxylation with a rate enhancement (kcat/Km/kuncat) of 140,000, as well as highly regioselective cross-aldol reactions of ketones and p-nitrobenzaldehyde. These studies provide new strategies for the generation of catalytic antibodies possessing binding sites for functionalized components.


Subject(s)
Aldehydes/chemistry , Amines/chemistry , Antibodies/metabolism , Benzaldehydes/chemistry , Binding Sites , Catalysis , Catalytic Domain , Decarboxylation , Ketones/chemistry , Kinetics , Stereoisomerism
17.
Toxicon ; 60(3): 348-57, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22575284

ABSTRACT

Ciguatera fish poisoning (CFP) is a form of food poisoning caused by the ingestion of a variety of reef fish that have accumulated trace amounts of ciguatoxins produced by dinoflagellates of the genus Gambierdiscus through the food chain. CFP affects more than 50,000 people each year. The extremely low level of the causative neurotoxins, ciguatoxins, in fish has hampered the preparation of antibodies for detecting the toxins. In this paper, we describe a thiol strategy for synthesizing a keyhole limpet hemocyanin (KLH)-conjugate (20) of the ABCDE-ring fragment of the Pacific ciguatoxins, CTX1B (1) and 54-deoxyCTX1B (4). We succeeded in producing a monoclonal antibody (3G8) against the left wings of these ciguatoxins by immunizing mice with the hapten-KLH conjugate (20) as the synthetic antigen. The most promising mAb, 3G8, does not cross-react with other related marine toxins. Sandwich enzyme-linked immunosorbent assay (ELISA) utilizing 3G8 and the previously prepared monoclonal antibody (8H4) enabled us to detect 1 specifically at less than 0.28 ng/mL.


Subject(s)
Ciguatoxins/analysis , Fishes , Food Contamination , Food Inspection/methods , Seafood/analysis , Adjuvants, Immunologic/chemistry , Animals , Antibodies, Monoclonal/metabolism , Antibody Affinity , Ciguatera Poisoning/prevention & control , Ciguatoxins/chemistry , Ciguatoxins/metabolism , Cross Reactions , Dinoflagellida/metabolism , Enzyme-Linked Immunosorbent Assay , Haptens/chemistry , Hemocyanins/chemistry , Limit of Detection
18.
J Biosci Bioeng ; 111(5): 564-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21277826

ABSTRACT

Antibodies were covalently conjugated with poly(ethylene glycol) (PEG) and the properties of the PEGylated antibodies in organic media were investigated. Two types of monoclonal antibody were used in this study. One was a monoclonal antibody (abzyme) that was prepared against a hapten mimicking a transition state of hydrolysis. Another was a monoclonal antibody against estrogen, which is not soluble in water. By electrophoresis and mass spectral analysis, the covalent conjugation with PEG chains was confirmed. The PEGylated antibodies bound to antigens and the PEGylated abzyme catalyzed a hydrolysis reaction in an aqueous solution. The PEGylated antibodies were soluble in dichloromethane and acetone and interacted with antigen either in dichloromethane or in acetone. In conclusion, PEGylated antibodies can be employed as analytical tools for water-insoluble analytes.


Subject(s)
Antibodies, Monoclonal/chemistry , Polyethylene Glycols/chemistry , Antibodies, Monoclonal/immunology , Antigen-Antibody Reactions , Circular Dichroism , Haptens/immunology , Immobilized Proteins/chemistry , Solubility , Solvents/chemistry
19.
J Biosci Bioeng ; 111(4): 397-401, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21285004

ABSTRACT

For high-throughput screening of protein-protein interactions, we have developed a novel yeast screening system using Bimolecular fluorescence complementation (BiFC). Two yeast plasmids, in which genes of heterodimerized peptides LZA and LZB were each fused with those of non-fluorescent half fragments of Kusabira-Green mutant (mKG2), were transformed into a- and α-type yeast, respectively. Mating of them gave a library, which was screened by following green fluorescence resulted from LZA-LZB interaction. The method showed potential ability to detect the positive clones from a model library, in which green-fluorescent and non-fluorescent yeast was mixed in a ratio of 1:675.


Subject(s)
Luminescent Proteins/analysis , Protein Interaction Mapping/methods , Saccharomyces cerevisiae/genetics , Flow Cytometry , Fluorescence , Humans , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Peptides/genetics , Saccharomyces cerevisiae/metabolism
20.
Mol Biosyst ; 7(3): 793-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21161086

ABSTRACT

The mechanism by which anti-ciguatoxin antibody 10C9Fab recognizes a fragment of ciguatoxin CTX3C (CTX3C-ABCDE) was investigated by mutational analysis based on structural data. 10C9Fab has an extraordinarily large and deep antigen-binding pocket at the center of its variable region. We mutated several residues located at the antigen-binding pocket to Ala, and kinetic analysis of the interactions between the mutant proteins and the antigen fragment was performed. The results indicate that some residues associated with the rigid antigen-binding pocket are structural hot-spots and that L-N94 is an energetic hot-spot for association of the antibody with the antigen fragment CTX3C-ABCDE, suggesting the importance of structural complementarity and energetic hot-spot interactions for specific recognition of polycyclic ethers.


Subject(s)
Antibodies/chemistry , Antibodies/immunology , Ciguatoxins/immunology , Ethers, Cyclic/chemistry , Ethers, Cyclic/immunology , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Polycyclic Compounds/chemistry , Antibodies/genetics , Antigen-Antibody Reactions , Immunoglobulin Fab Fragments/genetics , Kinetics , Models, Molecular , Molecular Structure , Mutation , Polycyclic Compounds/immunology , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...