Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Int J Hematol ; 102(5): 569-78, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26341959

ABSTRACT

Amylase-producing myeloma exhibits refractoriness to chemotherapy and a dismal prognosis. In this study, we established a human myeloma cell line, 8226/AMY1, in which a lentivirally transfected AMY1 gene was stably expressed and explored its biological characteristics. 8226/AMY1 showed a survival advantage over mock control when treated with dexamethasone, bortezomib, and lenalidomide in vitro partly through inhibition of apoptosis induced by these reagents. In a xenograft murine model, 8226/AMY1 showed rapid tumor growth and reduced sensitivity to bortezomib compared with mock. A microarray gene expression analysis identified TCL1A, which functions as a coactivator of the cell survival kinase Akt, differentially up-regulated in 8226/AMY1. The expression of phosphorylated Akt was increased in the 8226/AMY1 cells following bortezomib treatment, but not in the mock cells. In addition, treatment with perifosine, an inhibitor of Akt phosphorylation, enhanced the anti-myeloma effect of bortezomib in the 8226/AMY1 cells. Our data suggest that amylase-producing myeloma reduced the sensitivity to bortezomib in vitro and in vivo, and the up-regulation of TCL1A may influence the drug susceptibility of 8226/AMY1 via the phosphorylation of Akt. These findings provide clues for developing treatment approaches for not only amylase-producing myeloma, but also relapsed and refractory myelomas.


Subject(s)
Amylases/biosynthesis , Bortezomib/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Multiple Myeloma , Animals , Cell Line, Tumor , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Multiple Myeloma/drug therapy , Multiple Myeloma/enzymology , Multiple Myeloma/genetics , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins c-akt/metabolism , Xenograft Model Antitumor Assays
2.
Genes Chromosomes Cancer ; 51(1): 42-53, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21965128

ABSTRACT

In this study, we established and analyzed a novel human myeloid leukemia cell line, AMU-AML1, from a patient with acute myeloid leukemia with multilineage dysplasia before the initiation of chemotherapy. AMU-AML1 cells were positive for CD13, CD33, CD117, and HLA-DR by flow cytometry analysis and showed a single chromosomal abnormality, 46, XY, t(12;22)(p13;q11.2), by G-banding and spectral karyotyping. Fluorescent in situ hybridization analysis indicated that the chromosomal breakpoint in band 12p13 was in the sequence from the 5' untranslated region to intron 1 of TEL and that the chromosomal breakpoint in band 22q11 was in the 3' untranslated region of MN1. The chimeric transcript and protein of MN1-TEL could not be detected by reverse-transcriptase polymerase chain reaction or Western blot analysis. However, the MN1 gene was amplified to three copies detected by array comparative genomic hybridization analysis, and the expression levels of the MN1 transcript and protein were high in AMU-AML1 cells when compared with other cell lines with t(12;22)(p13;q11-12). Our data showed that AMU-AML1 cells contain t(12;22)(p13;q11.2) without chimeric fusion of MN1 and TEL. The AMU-AML1 cells gained MN1 copies and had high expression levels of MN1. Thus, the AMU-AML1 cell line is useful for studying the biological consequences of t(12;22)(p13;q11.2) lacking chimeric MN1-TEL.


Subject(s)
Cell Line, Tumor , Chromosomes, Human, Pair 12 , Chromosomes, Human, Pair 22 , Leukemia, Myeloid/genetics , Oncogene Proteins, Fusion/genetics , Transcription Factors/genetics , Translocation, Genetic , Tumor Suppressor Proteins/genetics , Chromosome Banding , Chromosome Breakpoints , Comparative Genomic Hybridization , Gene Expression , Gene Expression Regulation, Leukemic , Gene Order , Humans , Immunophenotyping , In Situ Hybridization, Fluorescence , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Male , Middle Aged , Oncogene Proteins, Fusion/metabolism , Spectral Karyotyping , Trans-Activators , Transcription Factors/metabolism , Transcription, Genetic , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...