Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dent Res ; 100(5): 532-541, 2021 05.
Article in English | MEDLINE | ID: mdl-33289448

ABSTRACT

The tooth is mainly composed of dentin and enamel. Identification of dentin-producing odontoblasts and enamel-producing ameloblasts using reporter techniques is useful to study tooth development and regeneration with tissue engineering. Ameloblasts express Amelogenin, Ameloblastin, Enamelin, and Amelotin, whereas odontoblasts express Dentin sialophosphoprotein (Dspp) and Dentin matrix protein1 (Dmp1). Although there are several transgenic lines using promoter elements or bacterial artificial chromosomes (BACs) to label odontoblasts and ameloblasts, there is a possibility that the expression patterns vary from the endogenous genes. Here, we established 2 lines of mice where tdTomato was knocked into the second exon of X-chromosomal Amelogenin (Amelx), and green fluorescent protein (GFP) was knocked into the second exon of Dspp. tdTomato and GFP were highly expressed on secretory ameloblasts and secretory and fully differentiated odontoblasts, respectively. In addition, DSPP and AMELX were not produced in the dentin matrix and enamel matrix of DsppGFP/GFP and AmelxtdTomato male mice (as representative of AmelxtdTomato/Y hemizygous male mice), respectively. Moreover, micro-computed tomography analysis of AmelxtdTomato male mice revealed a notable reduction in enamel volume but increased dentin mineral density. DsppGFP/GFP mice had reduced dentin mineral density. To identify odontoblasts and ameloblasts from developing tooth, we examined the expression of mesenchymal cell surface molecules CD90, CD166 and epithelial cell surface molecules CD49f, Epcam1 with fluorescence on odontoblasts and ameloblasts in these mice. We found that GFP+ odontoblasts and tdTomato+ ameloblasts in tooth germ from 0.5-d-old DsppGFP/+ mice and AmelxtdTomato male mice were enriched in CD45-/Ter119-/Epcam1-/CD90+/Integrin α4+cell fractions and CD45-/Ter119-/Epcam1+/CD49f+/CD147+ cell fractions, respectively. By using antibodies against mesenchymal and epithelial cell surface molecules and fluorescence, we can easily distinguish odontoblasts from ameloblasts and isolate each cell for further studies. These mice would serve as useful models for tooth development and regeneration as well as provide concurrent observation for the differentiation processes of odontoblasts and ameloblasts in vivo and in vitro.


Subject(s)
Ameloblasts , Odontoblasts , Animals , Cell Differentiation , Extracellular Matrix Proteins/genetics , Gene Knock-In Techniques , Male , Mice , Mice, Transgenic , Phosphoproteins/genetics , Sialoglycoproteins , X-Ray Microtomography
2.
Adv Immunol ; 132: 71-89, 2016.
Article in English | MEDLINE | ID: mdl-27769508

ABSTRACT

Early in embryonic development of mice, from day 12.5 after conception, myeloid-lymphoid bipotent progenitors, expressing receptors both for IL7 and CSF-1, migrate from embryonic blood into developing fetal liver. These progenitors also express multiple chemokine receptors, i.e., CCR7, CXCR3, CXCR4, and CXCR5, all on one cell. Their migration through LYVE-1+ vascular endothelium is guided by CCR7, recognizing the chemokine CCL19, and by CXCR3, recognizing CXCL10/11, chemokines which are both produced by the endothelium. Once inside fetal liver, the progenitors are attracted by the chemokine CXCL12 to ALCAM+ liver mesenchyme, which produces not only this chemokine, but also the myeloid differentiation-inducing cytokine CSF-1 and the lymphoid differentiation-inducing cytokine IL7. In this mesenchymal environment B-lymphocyte lineage progenitors are then induced by IL7 to enter differentiation and Ig gene rearrangements. Within 3-4 days surface IgM+ immature B-cells develop, which are destined to enter the B1-cell compartments in the peripheral lymphoid organs.


Subject(s)
B-Lymphocytes/physiology , Chemokines/metabolism , Liver/physiology , Lymphopoiesis , Mesoderm/physiology , Precursor Cells, B-Lymphoid/physiology , Animals , Fetal Development , Fetus , Humans , Mice , Receptors, CCR7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...