Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
ChemSusChem ; : e202400434, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884447

ABSTRACT

Utilizing photocatalytic CO2 reduction presents a promising avenue for combating climate change and curbing greenhouse gas emissions. However, maximizing its potential hinges on the development of materials that not only enhance efficiency but also ensure process stability. Here, we introduce Hiroshima University Silicate-7 (HUS-7) with immobilized Ti species as a standout contender. Our study demonstrates the remarkable photocatalytic activity of HUS-7 in CO2 reduction, yielding substantially higher carbonaceous product yields compared to conventional titanium-based catalysts TS-1 and P25. Through thorough characterization, we elucidate that their boosted photocatalytic performance is attributed to the incorporation of isolated Ti species within the silica-based precursor, serving as potent photoinduced active sites. Moreover, our findings underscore the crucial role of the Ligand-to-Metal Charge Transfer (LMCT) process in facilitating the photoactivation of CO2 molecules, shedding new light on key mechanisms underlying photocatalytic CO2 reduction.

2.
ACS Appl Mater Interfaces ; 16(8): 10251-10259, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38241200

ABSTRACT

Single-atom catalysts are thought to be the pinnacle of catalysis. However, for many reactions, their suitability has yet to be unequivocally proven. Here, we demonstrate why single Pd atoms (PdSA) are not catalytically ideal for generating H2 from formic acid as a H2 carrier. We loaded PdSA on three silica substrates, mesoporous silicas functionalized with thiol, amine, and dithiocarbamate functional groups. The Pd catalytic activity on amino-functionalized silica (SiO2-NH2/PdSA) was far higher than that of the thiol-based catalysts (SiO2-S-PdSA and SiO2-NHCS2-PdSA), while the single-atom stability of SiO2-NH2/PdSA against aggregation after the first catalytic cycle was the weakest. In this case, Pd aggregation boosted the reaction yield. Our experiments and calculations demonstrate that PdSA in SiO2-NH2/PdSA loosely binds with amine groups. This leads to a limited charge transfer from Pd to the amine groups and causes high aggregability and catalytic activity. According to the density functional calculations, the loose binding between Pd and N causes most of Pd's 4d electrons in amino-functionalized SiO2 to remain close to the Fermi level and labile for catalysis. However, PdSA chemically binds to the thiol group, resulting in strong hybridization between Pd and S, pulling Pd's 4d states deeper into the conduction band and away from the Fermi level. Consequently, fewer 4d electrons were available for catalysis.

3.
ACS Appl Mater Interfaces ; 15(46): 54073-54084, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37944066

ABSTRACT

In recent years, transportation-related air pollution has escalated into a global concern, necessitating the development of a three-way catalyst (TWC) technology to address harmful emissions. However, the efficiency of TWC's performance in mitigating these emissions has been hindered because of limited mass transfer efficiency within their structures. Thus, this study attempted to overcome the existing issue by synthesizing a series of macroporous TWC particles exhibiting various macropore sizes via a template-assisted spray process, aiming to achieve optimal mass transfer efficiency and catalytic performance. The synthesis incorporated various template particles (size of 67-381 nm) to obtain various macroporous structures. Thereafter, these macroporous particles were assessed for their carbon monoxide (CO) oxidation performance, revealing a substantial influence of the macropore size on the catalytic performance of TWC structures. Interestingly, among the investigated samples, those containing the smallest and largest macropores demonstrated the highest CO oxidation performances. Based on these results, a plausible reactant diffusion mechanism was proposed to explain the effect of the macropore size on the diffusion efficiency within the macroporous structures. This work may have significant implications in optimizing the macroporous structure to enhance catalytic performance in the gas purification process.

4.
Environ Sci Pollut Res Int ; 30(53): 113409-113423, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37848788

ABSTRACT

Presence of heavy metals in wastewater is a critical environmental issue, and efficient extraction of the metals remains a challenging task. In this study, the adsorption behavior of Ce(III), Hg(II), and Cu(II) metal ions using MCM-48 material modified with acid and base functional groups was examined. The modified materials were characterized using various techniques, including XRD, BET, FT-IR, NMR, and SEM, which revealed that the materials' properties remained unchanged after modification. The adsorption capacity of the modified materials for metal ions was then evaluated and was found that the amine-modified MCM-48 material exhibited the highest adsorption efficiency. Precisely, the amine-modified material achieved an adsorption capacity of 97% for Ce(III), 98% for Hg(II), and 90% for Cu(II) after 180 min of adsorption. These results highlight the effectiveness of amine functionalization in enhancing the adsorption capacity of silica material for heavy metals.


Subject(s)
Mercury , Metals, Heavy , Water Pollutants, Chemical , Wastewater , Silicon Dioxide/chemistry , Amines/chemistry , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis , Metals, Heavy/chemistry , Mercury/chemistry , Ions , Adsorption , Kinetics , Hydrogen-Ion Concentration
5.
Environ Sci Pollut Res Int ; 30(32): 78243-78261, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37269508

ABSTRACT

In the current study, tetranuclear Ni complex [Ni4(LH)4]·CH3CN (1) (LH3=(E)-2-(hydroxymethyl)-6-(((2-hydroxyphenyl)imino)methyl)phenol) was prepared and incorporated in sulfonic acid functionalized MCM-48 material. This composite nanoporous material was investigated for the adsorption of toxic cationic water pollutant dyes like crystal violet (CV) and methylene blue (MB) from the water solution. Thorough characterization was carried out using a variety of techniques, including NMR, ICP, powder XRD, TGA, SEM, BET, and FT-IR, to verify the phase purity, existence of guest moiety, material morphology, and other crucial variables. The adsorption property was increased with the metal complex immobilization on the porous support. The effect of various parameters on the adsorption process was discussed, including adsorbent dosage, temperature, pH, NaCl concentration, and contact time. Maximum dye adsorption was found at 0.2 mg/ml adsorbent dosage, 10 ppm dye concentration, 6-7 pH, 25 °C temperature, and 15 minutes of contact time. The adsorption of MB (methylene blue) and CV (crystal violet) dyes by Ni complex integrated MCM-48 was effective, with over 99% adsorption achieved in 15 minutes. A recyclability test was also performed, and the material is reusable up to the third cycle, with no notable decline in adsorption found. From the previous literature survey, it is clear that very high adsorption efficiency was achieved using MCM-48-SO3-Ni in considerably short contact time which proves the novelty and effectiveness of the modified material. Ni4 was prepared, characterized, and immobilized in sulfonic acid functionalized MCM-48, and this robust and reusable adsorbent was highly effective for the adsorption of methylene blue and crystal violet dyes with >99% adsorption efficiency in short duration.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Wastewater , Silicon Dioxide , Water Pollutants, Chemical/analysis , Adsorption , Methylene Blue/chemistry , Porosity , Gentian Violet , Spectroscopy, Fourier Transform Infrared , Coloring Agents/chemistry , Kinetics
6.
Phys Chem Chem Phys ; 24(7): 4136-4146, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-34647941

ABSTRACT

Interzeolite conversion, which refers to the synthesis of zeolites using a pre-made zeolite as the starting material, has enabled promising outcomes that could not be easily achieved by the conventional synthesis from a mixture of amorphous aluminum and silicon sources. Understanding the mechanism of interzeolite conversion is of particular interest to exploit this synthesis route for the preparation of tailor-made zeolites as well as the discovery of new structures. It has been assumed that the structural similarity between the starting zeolite and the target one is crucial to a successful interzeolite conversion. Nevertheless, an image as to how one type of zeolite evolves into another one remains unclear. In this work, a series of dealuminated FAU zeolites were created through acid leaching and employed as the starting zeolites in the synthesis of AEI zeolite under various conditions. This experimental design allowed us to create a comprehensive diagram of the interzeolite conversion from FAU to AEI as well as to figure out the key factors that enable this kinetically favourable crystallization pathway. Our results revealed different scenarios of the interzeolite conversion from FAU to AEI and pinpointed the importance of the structure of the starting FAU in determining the synthesis outcomes. A prior dealumination was proven effective to modify the structure of the initial FAU zeolite and consequently facilitate its conversion to the AEI zeolite. In addition, this strategy allowed us to directly transfer the knowledge obtained from the interzeolite conversion to a successful synthesis of the AEI zeolite from dealuminated amorphous aluminosilicate precursors. These results offer new insights to the design and fabrication of zeolites via the interzeolite conversion as well as to the understandings of the crystallization mechanisms.

7.
Phys Chem Chem Phys ; 23(39): 22273-22282, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34644369

ABSTRACT

Recently, Pd-exchanged CHA zeolites (Pd-CHA) have attracted attention as promising passive NOx adsorbers (PNAs) for reducing NOx emissions during the cold start period of a vehicle engine. In this work, the relationship between the local structures and the NO adsorption/desorption properties of the Pd cations in CHA zeolites was investigated. Pd cation formation and NO adsorption were theoretically explored by density functional theory (DFT) calculations for different paired Al sites in six-/eight-membered rings (6MR/8MR). Furthermore, we prepared a series of Pd-CHAs with different Pd loadings (0.5-5.4 wt%) and evaluated their NO adsorption/desorption properties by in situ infrared (IR) spectroscopy and temperature-programmed desorption (TPD) measurements. The increase in the Pd loading resulted in a shift in the NO desorption temperature toward a higher temperature regime. This phenomenon was ascribed to the increase in the proportion of less stable Pd cations, resulting in improved NO adsorption. Furthermore, the effect of Al distribution on the NO adsorption property of Pd-CHA was examined using CHA zeolites containing different proportions of paired Al sites in 6MR while maintaining similar Si/Al ratios (Si/Al = 12.0-16.5). The present study, based on a combination of theoretical and experimental techniques, shows that the NO adsorption/desorption properties over Pd-CHA can be tuned by controlling the Pd loading amount and the type of paired Al sites.

8.
Chemosphere ; 276: 130181, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33735650

ABSTRACT

Microporous organosilicas assembled from polysilsesquioxane (POSS) building blocks are promising materials that are yet to be explored in-depth. Here, we investigate the processing and molecular structure of bispropylurea bridged POSS (POSS-urea), synthesised through the acidic condensation of 1,3-bis(3-(triethoxysilyl)propyl)urea (BTPU). Experimentally, we show that POSS-urea has excellent functionality for molecular recognition toward acetonitrile with an adsorption level of 74 mmol/g, which compares favourably to MOFs and zeolites, with applications in volatile organic compounds (VOC). The acetonitrile adsorption capacity was 132-fold higher relative to adsorption capacity for toluene, which shows the pores are highly selective towards acetonitrile adsorption due to their size and arrangement. Theoretically, our tight-binding density functional and molecular dynamics calculations demonstrated that this BTPU based POSS is microporous with an irregular placement of the pores. Structural studies confirm maximal pore sizes of ∼1 nm, with POSS cages possessing an approximate edge length of ∼3.16 Å.


Subject(s)
Organosilicon Compounds , Volatile Organic Compounds , Adsorption , Toluene
9.
Chem Sci ; 12(47): 15603-15608, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-35003590

ABSTRACT

Generation of dihydrogen from water splitting, also known as water reduction, is a key process to access a sustainable hydrogen economy for energy production and usage. The key step is the selective reduction of a protic hydrogen to an accessible and reactive hydride, which has proven difficult at a p-block element. Although frustrated Lewis pair (FLP) chemistry is well known for water activation by heterolytic H-OH bond cleavage, to the best of our knowledge, there has been only one case showing water reduction by metal-free FLP systems to date, in which silylene (SiII) was used as the Lewis base. This work reports the molecular design and synthesis of an ortho-phenylene linked bisborane-functionalized phosphine, which reacts with water stoichiometrically to generate H2 and phosphine oxide quantitatively under ambient conditions. Computational investigations revealed an unprecedented multi-centered electron relay mechanism offered by the molecular framework, shuttling a pair of electrons from hydroxide (OH-) in water to the separated proton through a borane-phosphonium-borane path. This simple molecular design and its water reduction mechanism opens new avenues for this main-group chemistry in their growing roles in chemical transformations.

10.
Dalton Trans ; 49(29): 9972-9982, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32484170

ABSTRACT

A chabazite (CHA zeolite) was synthesized using high-silica faujasite (FAU) zeolites with a Si/Al ratio of 93, an additional alumina source (aluminum hydroxide) combined with seed crystals, and N,N,N-trimethyl-1-adamantammonium hydroxide. We compared the crystallization behavior of the starting material (HSY + Al) with that of other combinations of silica/alumina sources (high-silica and low-silica FAU, fumed silica, and aluminum hydroxide). HSY + Al rapidly yielded nanosized CHA zeolites with a crystal size of approximately 70 nm, exhibited high product crystallinity and high yield and offered a wide synthesis window. A combination of analytic experiments using electrospray-ionization mass spectrometry and nuclear magnetic resonance (NMR) suggested that in the early stage, the pre-introduced CHA seeds provide a crystal nucleus and the FAU zeolites decompose to form oligomer species in the liquid phase. Meanwhile, aluminum hydroxide retains its solid phase. Subsequent crystallization of the zeolites is accelerated by the liquid silicate oligomer and solid aluminate sources, resulting in a high yield and rapid synthesis of nanosized CHA zeolites. We observed that phosphorus-modified CHA zeolites synthesized using HSY + Al perform well as a catalyst for ethanol conversion reactions. Controlled Si/Al ratios and additional phosphorus modifications improve catalytic durability, thereby exhibiting a higher propylene yield from the reaction within the zeolite pore system.

11.
Chem Sci ; 10(27): 6604-6611, 2019 Jul 21.
Article in English | MEDLINE | ID: mdl-31367311

ABSTRACT

Although iron oxides have been extensively studied as photocatalysts because of their abundance and environmental compatibility, their performance is notoriously low due to factors such as low photoinduced charge-separation efficiency. Iron oxides, thus, must be modified with expensive and/or toxic materials to attain higher performances, which devalues their appeal as sustainable materials. Here, we design an iron oxide exhibiting an unprecedentedly high photocatalytic performance unrealized by previous photocatalysts such as TiO2 for reactions including the selective oxidation of cyclohexane to industrial nylon precursors. The iron oxide photocatalyst consists of ferric dimers, otherwise extremely unstable, formed via etching of Fe and O sites from ferric oxide nanoparticles immobilized within porous silica. We demonstrate a remarkably high photoinduced charge-separation efficiency (long lifetime of active species) of the ferric dimers due to their electronic structure and the potential of this supported photocatalyst for many more reactions.

12.
Chem Commun (Camb) ; 54(35): 4402-4405, 2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29459922

ABSTRACT

Enclosing functional nanoparticles in stable inorganic supports is important for generating ultra-stable catalytic active sites with good performance and material utilization efficiency. Here we describe a simple method to synthesize ultra-thin Ag nanocrystals with dimensions that are defined by the ∼1.4 nm 2D interlayer separating a layered silicate nanostructure. We call the particles "nanoplates" because they are <1.4 nm thick in one direction and their in-plane dimensions are defined by reaction time. The layered silicate is pillared with dialkylurea, which serves both as a reducing agent for the Ag precursor and immobilizes the Ag nanoplates in the interstitial nanospace. The supported Ag nanoplates showed catalytic activity for hydrolysis of NH3BH3 and generation of H2 at room temperature. These supported Ag nanocatalysts had performance much higher than spherical Ag nanoparticles. They, moreover, had performance and stability comparable to costly supported Pt nanoparticles.

13.
ACS Omega ; 3(2): 2363-2373, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-31458534

ABSTRACT

A mono-potassium cation-encapsulated Preyssler-type phosphotungstate, [P5W30O110K]14- (1), was prepared as a potassium salt, K14[P5W30O110K] (1a), by heating mono-bismuth- or mono-calcium-encapsulated Preyssler-type phosphotungstates (K12[P5W30O110Bi(H2O)] or K13[P5W30O110Ca(H2O)]) in acetate buffer. Characterization of the potassium salt 1a by single-crystal X-ray structure analysis, 31P and 183W nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy, high-resolution electrospray ionization mass spectroscopy, and elemental analysis revealed that one potassium cation is encapsulated in the central cavity of the Preyssler-type phosphotungstate molecule with a formal D 5h symmetry. Density functional theory calculations have confirmed that the potassium cation prefers the central position of the cavity over a side position, in which no water molecules are coordinated to the encapsulated potassium cation. 31P NMR and cyclic voltammetry analyses revealed the rapid protonation-deprotonation of the oxygens in the cavity compared to that of other Preyssler-type compounds. Heating of 1a in the solid state afforded a di-K+-encapsulated compound, K13[P5W30O110K2] (2a), indicating that a potassium counter-cation is introduced in one of the side cavities, concomitantly displacing the internal potassium ion from the center to a second side cavity, thus providing a new method to encapsulate an additional cation in Preyssler compounds.

14.
Chem Sci ; 9(46): 8637-8643, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30746112

ABSTRACT

Despite the considerable attention given to the applications of magadiite in previous research, the properties of this natural layered silicate have remained mysterious due to the lack of crystal structure information. On the other hand, no one has doubted the intercalation capability between the layers. Here we succeed in determining the structure of magadiite using X-ray pair distribution functions and synchrotron powder diffractometry. We discover unexpected zeolitic microchannels within the layers. We describe efficient synthesis of 100% pure benzoic acid from toluene by using magadiite as an additive in a TiO2 photocatalytic system oxidizing toluene. Based on the uncovered structure of magadiite, we clarify the mechanism of this unique photocatalytic system: the microchannels of magadiite not only separate/accommodate the desired partially oxidized product formed on TiO2 but also prevent the accumulation of the overoxidized products on the TiO2 surface that deactivates the photocatalytic activity.

15.
Dalton Trans ; 46(23): 7441-7450, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28561091

ABSTRACT

Crystalline layered silicates are promising materials for the rational design of innovative catalysts owing to their wide variety and easily tunable surfaces. However, diffusional limitation in their interlayer spaces limits their catalytic efficiency. Herein, we have developed a novel synthesis route to a highly active layered silicate catalyst utilizing Hiroshima University Silicates (HUSs). We attempted to tune the stacking structure of the silicate layers of HUS-2 and HUS-7 ion-exchanged with hexadecyltrimethylammonium (C16TMA) using organic-solvent treatment, and found that cyclohexane treatment of HUS-7 gave an aggregate of randomly restacked silicate nanosheets without degradation of the original silicate framework. We prepared amine-modified base catalysts by grafting with aminopropyltriethoxysilane, and investigated their catalytic performances in the transesterification of triacetin with methanol. The catalyst based on HUS-7 exhibited a much higher catalytic activity than that based on HUS-2 despite their similar framework topology. Moreover, the activity of the HUS-7-based catalyst was far superior to those of other base catalysts, such as amine-modified mesoporous silica, catalyst resin, and alkylamine. Detailed characterization of the catalysts revealed that the improved accessibility of reactant molecules to the immobilized functional units, which is derived from both the randomly stacked silicate layers and the bulky interlayer molecules incorporated, is the primary reason for the high catalytic efficiency of the layered silicate catalyst.

16.
Inorg Chem ; 56(4): 2042-2049, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28182416

ABSTRACT

We describe the preparation of ε-Keggin-type cobaltomolybdate-based 3D frameworks with sodium cations, NaH9[ε-CoIIMoV8MoVI4O40CoII2], and their characterization by high-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure (XAFS) spectroscopy. Atomic-scale HAADF-STEM images of ε-Keggin compounds were obtained for the first time, and positions of Mo and Co were confirmed. Furthermore, clear evidence of the presence of a CoO4 tetrahedron was obtained by X-ray absorption near-edge structure (XANES) analysis. Their characterization clearly revealed that ε-Keggin-type cobaltomolybdate units, [ε-CoMo12O40]n-, constructed by a central CoIIO4 tetrahedron and 12 surrounding MoO6 octahedra, are linked with CoII to form 3D frameworks.

17.
Inorg Chem ; 55(21): 11583-11592, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27775333

ABSTRACT

Dipotassium cation (K+)-encapsulated Preyssler-type phosphotungstate, [P5W30O110K2]13-, was prepared by heating monobismuth (Bi3+)-encapsulated Preyssler-type phosphotungstate, [P5W30O110Bi(H2O)]12-, in acetate buffer in the presence of an excess amount of potassium cations. Characterization of the isolated potassium salt, K13[P5W30O110K2] (1a), and its acid form, H13[P5W30O110K2] (1b), by single crystal X-ray structure analysis, 31P and 183W nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV), high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS), and elemental analysis revealed that two potassium cations are encapsulated in the Preyssler-type phosphotungstate molecule with formal D5h symmetry, which is the first example of a Preyssler-type compound with two encapsulated cations. Incorporation of two potassium cations enhances the thermal stability of the potassium salt, and the acid form shows catalytic activity for hydration of ethyl acetate. Packing of the Preyssler-type molecules was observed by high-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM).

18.
Angew Chem Int Ed Engl ; 55(11): 3600-5, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26891152

ABSTRACT

Although tremendous effort has been directed to synthesizing advanced TiO2 , it remains difficult to obtain TiO2 exhibiting a photocatalytic efficiency higher than that of P25, a benchmark photocatalyst. P25 is composed of anatase, rutile, and amorphous TiO2 particles, and photoexcited electron transfer and subsequent charge separation at the anatase-rutile particle interfaces explain its high photocatalytic efficiency. Herein, we report on a facile and rational hydrothermal treatment of P25 to selectively convert the amorphous component into crystalline TiO2 , which is deposited between the original anatase and rutile particles to increase the particle interfaces and thus enhance charge separation. This process produces a new TiO2 exhibiting a considerably enhanced photocatalytic efficiency. This method of synthesizing this TiO2 , inspired by a recently burgeoning zeolite design, promises to make TiO2 applications more feasible and effective.

19.
ACS Appl Mater Interfaces ; 7(43): 24360-9, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26479449

ABSTRACT

The attractive properties of zeolites, which make them suitable for numerous applications for the energy and chemical industries and for life sciences, are derived from their crystalline framework structures. Herein, we describe the rational synthesis of a microporous material, HUS-10, utilizing a layered silicate precursor, HUS-2, as a structural building unit. For the ordered micropores to be formed, interlayer pillars that supported the original silicate layer of HUS-2 were immobilized through the interlayer silylation of silanol groups with trichloromethylsilane and a subsequent dehydration-condensation reaction of the hydroxyl groups on the preintroduced tetrahedral units. An actual molecular sieving ability, enabling the adsorption of molecules smaller than ethane, was confirmed in the ordered micropores of HUS-10. The hydrophilic adsorption could also be controlled by changing the number of methyl and hydroxyl groups in the immobilized interlayer pillars. In addition, when the adsorption behaviors of CO2, CH4, and N2 on HUS-10 were compared to those on siliceous MFI and CDO zeolites with approximately the same pore diameter, the CO2 adsorption capacity of HUS-10 was comparable. Conversely, because of the adsorption inhibition of CH4 and N2, HUS-10 exhibited larger CO2/CH4 and CO2/N2 adsorption ratios relative to those of MFI and CDO zeolites. These results reveal that the unique microporous framework structure presented by the rational structural design using the layered silicate precursor HUS-2 has the potential to separate CO2 from gas mixtures.

20.
ACS Appl Mater Interfaces ; 6(7): 4616-21, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24617730

ABSTRACT

We succeeded in the immobilization of Ti(IV) acetylacetonate onto interlayer surfaces of a layered silicate HUS-2 (Hiroshima University Silicate-2, Si20O40(OH)4·4[C5H14NO]) and investigated the photocatalytic acitivity of Ti-incorporated HUS-2 toward the partial oxidation of cyclohexane to cyclohexanol and cyclohexanone under solar light irradiation. XRD, SEM/EDX, (13)C CP and (29)Si MAS NMR and UV-vis measurements of Ti-incorporated HUS-2 confirmed that the isolated tetrahedral Ti species were homogeneously immobilized onto silicate sheets via Si-O-Ti covalent bond and acetylacetonate ligands were removed after calcination. Ti-incorporated HUS-2 showed ca. 100% selectivity for partial cyclohexane oxidation and considerably higher yields (cyclohexanol and cyclohexanone) than TS-1, a typical Ti-containing zeolite. Higher yields were obtained when the calcined Ti-incorporated HUS-2 with a larger amount of the grafted Ti were used.

SELECTION OF CITATIONS
SEARCH DETAIL
...