Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(27): 35225-35231, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38940229

ABSTRACT

Hydrogen boride (HB) nanosheets are expected to be safe and lightweight hydrogen carriers because of their high gravimetric hydrogen density (8.5 wt %) and photon-driven hydrogen release under mild conditions. However, previously reported HB nanosheets respond only to ultraviolet (UV) light to release hydrogen. In this study, we develop dye-modified HB nanosheets that can release hydrogen under visible light irradiation (>470 nm) without heat input. Hydrogen generation is initiated by electron injection from excited dye molecules into the conduction band of the HB nanosheets. The conduction band of the HB nanosheets is formed by the antibonding states of the B 2py and H 1s atomic orbitals, and the electrons injected from the dye molecules react with the protons of the HB nanosheets to release gaseous hydrogen molecules. Although the hydrogen production is terminated after long-term light irradiation owing to dye oxidation and/or loss of protons in HB nanosheets, the total amount of the released hydrogen molecules corresponds to approximately 25% of the protons in HB nanosheets even under the extra mild conditions. The addition of a sacrificial agent like iodine ions and a proton source like formic acid sustained the H2 generation from the dye-modified HB nanosheets under visible light irradiation for long term.

2.
Dalton Trans ; 53(20): 8546-8549, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38712880

ABSTRACT

The Lewis basicity of a µ3-oxo ligand for (µ3-O)[Rh(cod)]3(µ4-O)M (cod = 1,5-cyclooctadiene) complexes was controllable by metal species on the µ4-oxo ligand locating at the opposite site of the µ3-oxo ligand. Coordination of the µ3-oxo ligand of [(µ3-O){Rh(cod)}3(µ4-O){Au(PPh3)}][BF4] (1) to [Au(PPh3)]+ indicated sufficient Lewis basicity of the µ3-oxo ligand in 1 to form [{(Ph3P)Au}(µ3-O){Rh(cod)}3(µ4-O){Au(PPh3)}][BF4] (2). In contrast, the addition of Li+ to 1 induced elimination of the originally coordinated [Au(PPh3)]+ due to the weak Lewis basicity of the µ3-oxo ligand for (µ3-O){Rh(cod)}3(µ4-O)Li(THF)3, in which a pentanuclear species, [{(Ph3P)Au}(µ3-O){Rh(cod)}3(µ4-O){Li(THF)3}][BF4] (3), was assumed to be generated in situ before the dissociation of [Au(PPh3)]+.

3.
Inorg Chem ; 63(6): 3037-3046, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38300807

ABSTRACT

Low-valent tungsten species generated from WCl6 and N,N'-bis(trimethylsilyl)-2,5-dimethyldihydropyrazine (Si-Me2-DHP) promotes the catalytic formation of N-phenyl-2,3,4,5-tetraarylpyrroles 3aa-ka from diarylacetylenes 1a-k and azobenzene (2a). An initial catalyst activation process is a three-electron reduction of WCl6 with Si-Me2-DHP to afford transient 'WCl3' species. Catalytically active bis(imido)tungsten(VI) species via successive one-electron reduction and N═N bond cleavage of 2a was revealed by isolating W(═NPh)2Cl2(PMe2Ph)2 from imidotungsten(V) trichloride and 2a in the presence of PMe2Ph. The superior catalytic activity of the tungsten catalyst was clarified by a density functional theory study: activation energies for the key three steps, [2 + 2]-cycloaddition of W═NPh and diarylacetylene to form (iminoalkylidene)tungsten species, enyne metathesis with second diarylacetylene, and C-N bond formation, are reasonable values for the catalytic reaction at 180 °C. In addition, this tungsten catalyst overcame two distinct deactivation processes: α-enediamido formation and aggregation of the low-valent species, both of which were observed for previously developed vanadium and titanium catalysts. We also demonstrated the synthetic utility of pentaarylpyrroles 3aa and 3ba as well as N-(2-bromophenyl)-2,3,4,5-tetraarylpyrrole 3ab by derivatizing their π-conjugated compounds 9aa, 10ba, and 11ab.

4.
Dalton Trans ; 52(37): 13154-13160, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37655795

ABSTRACT

We found that bis(neopentylglycolato)diboron (B2nep2) served as a bidentate ligand and a one-electron reducing agent for early transition metal chlorides to afford MCl4(B2nep2). Treatment of B2nep2 with MCl5 (M = Nb and Mo) produced MCl4(B2nep2) via two successive reactions, coordination of B2nep2 to the metal center and one-electron reduction from M(V) to M(IV), while coordination of B2nep2 to MCl4 (M = Zr, Ti) was observed without reduction of the central metals. DFT studies for the reduction of NbCl5 by B2nep2 clarified the initial formation of seven-coordinated and B2nep2-ligated Nb(V) species, NbCl5(B2nep2), and one chloride on niobium(V) moves to the Lewis acidic boron center to generate NbCl4[(B2nep2)Cl]. The chloride on the boron atom of NbCl4[(B2nep2)Cl] is trapped by the second B2nep2 to give [NbCl4(B2nep2)][ClB2nep2]. After the formation of [ClB2nep2]- as an anionic sp2-sp3 diboron adduct, one-electron reduction of the niobium(V) center produces NbCl4(B2nep2) along with [ClB2nep2]˙ as a plausible diboron species, whose decomposition affords ClBnep and B2nep2. The reduction of metal halides in the presence of B2nep2 was exemplified by green LED irradiation of TiCl4(B2nep2), producing chloride-bridged titanium(III) species, (B2nep2)TiCl2(µ-Cl)2TiCl2(B2nep2).

5.
RSC Adv ; 13(5): 3020-3032, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756451

ABSTRACT

The synthesis and characterisation of two mononuclear aluminium alkyl complexes with the general composition [Al(Me)2{Ph2P(E)N(CH2)2N(CH2CH2)2O}] (E = Se (2a); S (2b)), and two binuclear aluminium complexes, [Al(Me)2{Ph2P-(E)N(CH2)2N(CH2CH2)2O}(AlMe3)] (E = Se (3a) and S (3b)), are described. The binuclear aluminium alkyl complex 3a proved to be a proficient catalyst for the addition of simple nucleophiles to heterocumulenes, leading to the synthesis of a variety of products such as urea, biuret, isourea, isothiourea, phosphorylguanidine, and quinazolinone derivatives, in contrast to its mononuclear analogues. Complex 3a is the first example of a single competent catalyst, which is also low-cost and eco-friendly and derived from a main-group metal, under solvent-free conditions either at room temperature or mild temperatures. Complex 3a possessed a wide functional group tolerance including heteroatoms, yielding the corresponding insertion products in good quantities and with high selectivity.

6.
Chem Commun (Camb) ; 59(7): 908-911, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36594831

ABSTRACT

Chromium-catalyzed olefination of arylaldehydes with haloforms was achieved using 2,3,5,6-tetramethyl-N,N'-bis(trimethylsilyl)-1,4-dihydropyrazine (1a) as an organic reducing agent, giving ß-halostyrene derivatives in a trans-selective manner. The reaction required no metal powders, such as zinc and manganese, as reductants, thereby minimizing metal-based reaction waste.

7.
Inorg Chem ; 61(50): 20461-20471, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36480319

ABSTRACT

Oxo- and hydroxo-bridged hexanuclear Ce(IV) clusters surrounded by 12 carboxylate ligands, Ce6O4(OH)4(O2CR)12(L)n (R = 2,6-Me2-4-MeOC6H2 (1a), 2,6-Me2-4-tBuC6H2 (1b), 2,4,6-Me3C6H2 (1c), 2,6-Me2C6H3 (1d), 2,6-Me2-4-FC6H2 (1e), 2,6-Me2-4-ClC6H2 (1f), 9-anthracenyl (1g), and CH2tBu (1h), L = H2O or RCO2H), were synthesized by treating Ce(OtBu)4 with the corresponding carboxylic acids (2-3 equiv.) in acetone or toluene, and the molecular structures of 1d and 1g were clarified by X-ray diffraction studies. UV-vis analyses of the clusters showed broad absorption corresponding to the ligand-to-metal charge transfer (LMCT) in the ultraviolet A (315-400 nm) to blue light region; density functional theory (DFT) studies of the simplified Ce(IV) and related Zr(IV) clusters, M6O4(OH)4(O2CR)12 (M = Ce, Zr, R = Ph, Me), revealed that the low-lying vacant 4f-orbitals of the Ce(IV) were responsible for absorption in the ultraviolet A to blue light region. Irradiation of blue LED light to 1a-f under an argon atmosphere resulted in the formation of 7-methylisobenzofuran-1(3H)-one (2a-f), which involved the following four steps: photoinduced homolysis of the Ce(IV)-OCOR bond, intramolecular hydrogen atom transfer to generate the corresponding benzyl radical, oxidation to the benzyl cation, and intramolecular cyclization. Cyclic voltammetry of cerium clusters 1a-f having 2,6-dimethyl-4-substituted arylcarboxylate ligands showed electrochemically irreversible redox waves in the range of -0.79 to -0.38 V (vs [Cp2Fe]+/Cp2Fe for E1/2). The one-electron-reduced Ce(III)Ce(IV)5 clusters 3a-h were isolated by reducing 1a-h with Cp*2Co to give [Cp*2Co][Ce6O4(OH)4(O2CR)12(thf)n] (3a-h); cluster 3d was the first structurally determined hexanuclear cerium cluster containing a [Ce6O4(OH)4]11+ core.

8.
Chemistry ; 28(22): e202200559, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35234311

ABSTRACT

Tailored molybdenum(VI)-oxo complexes of the form MoOCl2 (OR)2 (OEt2 ) catalyse olefin metathesis upon reaction with an organosilicon reducing agent at 70 °C, in the presence of olefins. While this reactivity parallels what has recently been observed for the corresponding classical heterogeneous catalysts based on supported metal oxide under similar conditions, the well-defined nature of our starting molecular systems allows us to understand the influence of structural, spectroscopic and electronic characteristics of the catalytic precursor on the initiation and catalytic proficiency of the final species. The catalytic performances of the pre-catalysts are determined by the highly electron withdrawing (σ-donation) character of alkoxide ligands, Ot BuF9 being the best. This activity correlates with both the 95 Mo chemical shift and the reduction potential that follows the same trend: Ot BuF9 >Ot BuF6 >Ot BuF3 .


Subject(s)
Alkenes , Molybdenum , Alkenes/chemistry , Catalysis , Ligands , Molybdenum/chemistry , Oxides/chemistry
9.
Chemistry ; 28(26): e202200474, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35293041

ABSTRACT

Ketones were selectively synthesized from thioesters by using diarylcuprates(I) generated in situ from copper(I) salts and aryl Grignard reagents in a 1 : 1.3-1.5 ratio under ambient temperature. During the ketone synthesis, various functional groups, such as carbonyl (ketones, esters, and amides), O-protecting groups, halogens, and heteroarenes, were tolerated to afford multifunctionalized ketones in excellent yields. This copper-mediated ketone synthesis could be applied to the synthesis of not only gluconolactone-derived ketone 6, a synthetic intermediate in the transformation to the SGLT2 inhibitor canagliflozin, but also thiolactol 8, a valuable synthetic intermediate for (+)-biotin. Control experiments on an isolated diphenylcuprate(I), [CuPh2 ]- (12), and DFT calculations revealed that this ketone synthesis proceeded by oxidative addition of the C-S bond of thioesters to [CuPh2 ]- , while reductive elimination from the CuIII intermediate produced the corresponding ketone and an inactive species [(RS)CuPh]- , the latter reacted with [CuPh]4 (11) to regenerate the reactive diphenylcuprate(I).


Subject(s)
Copper , Ketones , Catalysis , Copper/chemistry , Esters/chemistry , Halogens , Ketones/chemistry
11.
Org Lett ; 23(18): 7044-7048, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34432479

ABSTRACT

An allylic C-H acyloxylation of terminal alkenes with 4-nitrobenzoic acid was assisted by a bidentate-sulfoxide-ligated palladium catalyst combined with 1,4-benzoquinone and Ag2CO3 under mild reaction conditions. The catalytic activity was remarkably enhanced by Ag2CO3 as an additive and 4-nitrobenzoic acid as a carboxylate source; both components were essential to exhibiting high catalytic activity, high branch selectivity, and a wide substrate scope with low loading of the palladium catalyst. Branch-selective allylic acyloxylation of ethyl 7-octenoate (1a) gave the product which was led to ethyl 6,8-dihydroxyoctanoate (5), a useful synthetic intermediate of (R)-α-lipoic acid.

12.
J Am Chem Soc ; 143(21): 7879-7890, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-33904711

ABSTRACT

Recent advances in the catalytic application of cerium complexes were achieved through controlling the Ce(IV/III) redox couple. Although Ce(IV) complexes have been extensively investigated as stoichiometric oxidants in organic synthesis on the basis of their highly positive redox potentials, these complexes can be used as catalysts, not only by introducing supporting ligands around the coordination sphere of cerium, but also by taking advantage of the photoresponsive properties of Ce(IV) and Ce(III) species. Cerium is highly abundant, comparable to that of some first-row transition metals such as copper, nickel, and zinc. Cerium complexes are new and promising homogeneous catalyst candidates for a variety of organic transformations under mild reaction conditions. They are typically used to activate dioxygen to oxidize organic compounds and applied for organic radical generation using the photoresponsive character of Ce(IV) carboxylates and alkoxides as well as electronic transition of Ce(III), in which homolysis of Ce(IV)-ligand covalent bonds is an important step for the overall catalytic cycle. In this Perspective, we first review the early discovery of Ce(OAc)4-mediated oxidative transformations to emphasize the importance of Ce(IV)-OAc bond homolysis in various C-C bond-forming reactions and its relation to recent developments. We then focus on the fundamental importance of Ce(IV) reactivity involving thermal and photoassisted homolysis of the Ce(IV)-ligand covalent bond and the developments regarding Ce(IV/III) redox changes in catalytic reactions together with our recent findings on cerium-based catalysis.

13.
J Org Chem ; 86(4): 3287-3299, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33555861

ABSTRACT

Multifunctionalized indole derivatives were prepared by reducing azoarenes in the presence of ketones and bis(neopentylglycolato)diboron (B2nep2) with a catalytic amount of 4,4'-bipyridyl under neutral reaction conditions, where 4,4'-bipyridyl acted as an organocatalyst to activate the B-B bond of B2nep2 and form N,N'-diboryl-1,2-diarylhydrazines as key intermediates. Further reaction of N,N'-diboryl-1,2-diarylhydrazines with ketones afforded N-vinyl-1,2-diarylhydrazines, which rearranged to the corresponding indoles via the Fischer indole mechanism. This organocatalytic system was applied to diverse alkyl cyclic ketones, dialkyl, and alkyl/aryl ketones, including heteroatoms. Methyl alkyl ketones gave the corresponding 2-methyl-3-substituted indoles in a regioselective manner. This protocol allowed us to expand the preparation of indoles having high compatibility with not only electron-donating and electron-withdrawing groups but also N- and O-protecting functional groups.

14.
Coord Chem Rev ; 4072020 Mar 15.
Article in English | MEDLINE | ID: mdl-32863399

ABSTRACT

Imido complexes of early transition metals are key intermediates in the synthesis of many nitrogen-containing organic compounds. The metal-nitrogen double bond of the imido moiety undergoes [2+2] cycloaddition reactions with various unsaturated organic molecules to form new nitrogen-carbon and nitrogen-heteroatom bonds. This review article focuses on reactivity of the terminal imido complexes of Group 4-6 metals, summarizing their stoichiometric reactions and catalytic applications for a variety of reactions including alkyne hydroamination, alkyne carboamination, pyrrole formation, imine metathesis, and condensation reactions of carbonyl compounds with isocyanates.

15.
J Org Chem ; 85(19): 12382-12392, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32911934

ABSTRACT

Nickel- and palladium-catalyzed Fukuyama coupling reactions of a d-gluconolactone-derived thioester with arylzinc reagents at ambient temperature provided the corresponding multifunctional aryl ketones in high yield. Ligand screening for the nickel-catalyzed Fukuyama coupling reactions indicated that 1,2-bis(dicyclohexylphosphino)ethane (dCype) served as a superior supporting ligand to improve the product yield. In addition, Pd/C was a practical alternative that enabled ligand-free Fukuyama coupling reactions and was efficiently applied to the key C-C bond-forming step to prepare canagliflozin and dapagliflozin, which are diabetic SGLT2 inhibitors of current interest.


Subject(s)
Palladium , Sodium-Glucose Transporter 2 Inhibitors , Catalysis , Ligands , Nickel
16.
Org Lett ; 22(18): 7244-7249, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32903001

ABSTRACT

Self-assembled multilayer iron(0) nanoparticles (NPs, 6-10 nm), namely, sulfur-modified Au-supported Fe(0) [SAFe(0)], were developed for ligand-free one-pot carbon-carbon/carbon-nitrogen bond-forming reactions. SAFe(0) was successfully prepared using a well-established metal-nanoparticle catalyst preparative protocol by simultaneous in situ metal NP and nanospace organization (PSSO) with 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (Si-DHP) as a strong reducing agent. SAFe(0) was easy to handle in air and could be recycled with a low iron-leaching rate in reaction cycles.

17.
Chemistry ; 26(62): 14130-14136, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-32634253

ABSTRACT

The rare-earth metal complexes Ln(L1 )[N(SiHMe2 )2 ](thf) (Ln=La, Ce, Y; L1 =N,N''-bis(pentafluorophenyl)diethylenetriamine dianion) were synthesized by treating Ln[N(SiHMe2 )2 ]3 (thf)2 with L1 H2 . The lanthanum and cerium derivatives are active catalysts for the hydrosilylation of benzophenone derivatives with HN(SiHMe2 )2 . An amine-exchange reaction was revealed as a key step of the catalytic cycle, in which Ln-Si-H ß-agostic interactions are proposed to promote insertion of the carbonyl moiety into the Si-H bond.

18.
J Am Chem Soc ; 142(12): 5668-5675, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32109060

ABSTRACT

We found that in situ generated cerium(IV) carboxylate generated by mixing the precursor Ce(OtBu)4 with the corresponding carboxylic acids served as efficient photocatalysts for the direct formation of carboxyl radicals from carboxylic acids under blue light-emitting diodes (blue LEDs) irradiation and air, resulting in catalytic decarboxylative oxygenation of aliphatic carboxylic acids to give C-O bond-forming products such as aldehydes and ketones. Control experiments revealed that hexanuclear Ce(IV) carboxylate clusters initially formed in the reaction mixture and the ligand-to-metal charge transfer nature of the Ce(IV) carboxylate clusters was responsible for the high catalytic performance to transform the carboxylate ligands to the carboxyl radical. In addition, the Ce(IV) carboxylate cluster catalyzed direct lactonization of 2-isopropylbenzoic acid to produce the corresponding peroxy lactone and γ-lactone via intramolecular 1,5-hydrogen atom transfer (1,5-HAT).

19.
Chem Sci ; 11(14): 3604-3609, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-34094048

ABSTRACT

Chromium-catalyzed cyclopropanation of alkenes with bromoform was achieved to produce the corresponding bromocyclopropanes. In this catalytic cyclopropanation, an organosilicon reductant, 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (1a), was indispensable for reducing CrCl3(thf)3 to CrCl2(thf)3, as well as for in situ generation of (bromomethylidene)chromium(iii) species from (dibromomethyl)chromium(iii) species. The (bromomethylidene)chromium(iii) species are proposed to react spontaneously with alkenes to give the corresponding bromocyclopropanes. This catalytic cyclopropanation was applied to various olefinic substrates, such as allyl ethers, allyl esters, terminal alkenes, and cyclic alkenes.

20.
Angew Chem Int Ed Engl ; 59(4): 1552-1556, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31710140

ABSTRACT

A highly E-selective cross-dimerization of terminal alkynes with either terminal silylacetylenes, tert-butylacetylene, or 1-trimethylsilyloxy-1,1-diphenyl-2-propyne in the presence of a dichlorocobalt(II) complex bearing a sterically demanding 2,9-bis(2,4,6-triisopropylphenyl)-1,10-phenanthroline, activated with two equivalents of EtMgBr, gives a variety of (E)-1,3-enynes. A well-characterized diolefin/cobalt(0) complex, with divinyltetramethyldisiloxane, acted as a catalytically active species without any activation, clearly indicating that a cobalt(0) species is involved in the catalytic cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...