Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 4(9): 669-676, 2018 09.
Article in English | MEDLINE | ID: mdl-30082766

ABSTRACT

Pectin is one of the three key cell wall polysaccharides in land plants and consists of three major structural domains: homogalacturonan, rhamnogalacturonan I (RG-I) and RG-II. Although the glycosyltransferase required for the synthesis of the homogalacturonan and RG-II backbone was identified a decade ago, those for the synthesis of the RG-I backbone, which consists of the repeating disaccharide unit [→2)-α-L-Rha-(1 → 4)-α-D-GalUA-(1→], have remained unknown. Here, we report the identification and characterization of Arabidopsis RG-I:rhamnosyltransferases (RRTs), which transfer the rhamnose residue from UDP-ß-L-rhamnose to RG-I oligosaccharides. RRT1, which is one of the four Arabidopsis RRTs, is a single-spanning transmembrane protein, localized to the Golgi apparatus. RRT1 was highly expressed during formation of the seed coat mucilage, which is a specialized cell wall with abundant RG-I. Loss-of-function mutation in RRT1 caused a reduction in the level of RG-I in the seed coat mucilage. The RRTs belong to a novel glycosyltransferase family, now designated GT106. This is a large plant-specific family, and glycosyltransferases in this family seem to have plant-specific roles, such as biosynthesis of plant cell wall polysaccharides.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Glycosyltransferases/metabolism , Pectins/metabolism , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/physiology , Cell Wall/metabolism , Glycosyltransferases/physiology , Rhamnose/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...