Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 18(2): 385-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22364782

ABSTRACT

The reproducibility of contrast in secondary electron (SE) imaging during continuous electron irradiation, which caused surface contamination, was investigated using SE high-pass energy filtering in low-voltage scanning electron microscopy (SEM). According to high-pass energy-filtered imaging, dopant contrast in an indium phosphide remained remarkably stable during continuous electron irradiation although the contrast in unfiltered SE images decreased rapidly as a contamination layer was formed. Charge neutralization and the SE energy distributions indicate that the contamination layer induces a positive charge. This results in a decrease of low-energy SE emissions and reduced dopant contrast in unfiltered SE images. The retention of contrast was also observed in high-pass energy-filtered images of a gold surface. These results suggest that this imaging method can be widely used when SE intensities decrease under continuous electron irradiation in unfiltered SE images. Thus, high-pass energy-filtered SE imaging will be of a great assistance for SEM users in the reproducibility of contrast such as a quantitative dopant mapping in semiconductors.

2.
J Electron Microsc (Tokyo) ; 59 Suppl 1: S183-7, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20601354

ABSTRACT

We demonstrate that energy-filtered secondary electron (SE) imaging can be used effectively to observe dopant contrast from an InP surface covered with a contamination layer formed by continuous electron irradiation. Although dopant contrast from a surface covered with a contamination layer was almost invisible in a normal SE image, it was still clearly seen in the energy-filtered image. The contrast mechanism is explained in terms of a metal-semiconductor contact charging model and energy shift between the SE distributions across p-type and n-type regions. The results suggest that energy-filtered imaging can reduce the effects of a contamination layer.

3.
J Colloid Interface Sci ; 302(1): 82-6, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16844132

ABSTRACT

Adsolubilization of 2-naphthol into an adsorbed layer of triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, Pluronics) copolymers on hydrophobically modified silica particles has been investigated. Four kinds of Pluronics (P103, P105, P123, and F108) were employed in order to understand the effect of the hydrophobicity of the surfactants on the adsolubilization. The amount of the Pluronics adsorbed of the maximum/saturation adsorption level was increased with a decrease in the HLB value, suggesting that the more hydrophobic Pluronics (P103 and P123) adsorb preferentially onto the hydrophobic silica surface over the more hydrophilic Pluronics (P105 and F108). The greater adsorbed amount of the more hydrophobic surfactants resulted in a greater amount of 2-naphthol adsolubilized into the adsorbed Pluronics layers. In the case of simultaneous addition of the Pluronics and 2-naphthol, the amount adsolubilized into the adsorbed P123 and P103 layers increased in their low-surfactant-concentration regime, reached a maximum, and then decreased with a further increase in the Pluronics concentration. On the other hand, for both the P105 and F108 copolymers, a decrease in the adsolubilized amount was not observed over the whole range of copolymer concentration investigated. This difference is attributed to a difference in the hydrophobicity of the micellar aggregates in solution and of the adsorbed layers on the hydrophobic surface. When 2-naphthol was added after replacement of the Pluronics supernatant by a surfactant-free solution, the final decrease in the adsolubilization was insignificant for all the Pluronics. Indeed, the maximum amount of adsolubilization was comparable to the corresponding amount obtained in the case of simultaneous addition.


Subject(s)
Naphthols/chemistry , Polyethylene Glycols/chemistry , Propylene Glycols/chemistry , Silicon Dioxide/chemistry , Adsorption , Hydrophobic and Hydrophilic Interactions , Particle Size , Solubility , Surface Properties
4.
J Colloid Interface Sci ; 297(2): 465-9, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16376927

ABSTRACT

Adsolubilization of 2-naphthol into an adsorbed layer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers (Pluronics) on hydrophilic silica has been investigated. Four kinds of Pluronics (P103, P105, P123, and F108) were used in order to understand the effect of the hydrophobicity of surfactant on the adsolubilization. The order of the adsorption in the saturation level was found to be P123 approximately P103 > P105 >> F108, meaning that Pluronics with higher hydrophobicity can adsorb preferentially to the silica surface. Indeed, this order was parallel to the order of the adsolubilization amount of 2-naphthol. In the case of co-addition of the Pluronics and 2-naphthol, the adsolubilization amount increased gradually at lower surfactant concentration regions, reached a maximum, and then decreased with increasing concentration of the Pluronics. The maximum amount appeared at critical polymolecular micelle concentration of each Pluronics. On the other hand, the final decrement was not observed when 2-naphthol was added after replacement of the Pluronics supernatant by the Pluronics free solution. These results suggest that adsolubilization behavior is influenced by the existence of the polymolecular micellar aggregates in the solution phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...