Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4600, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816382

ABSTRACT

Electron transfer is a fundamental energy conversion process widely present in synthetic, industrial, and natural systems. Understanding the electron transfer process is important to exploit the uniqueness of the low-dimensional van der Waals (vdW) heterostructures because interlayer electron transfer produces the function of this class of material. Here, we show the occurrence of an electron transfer process in one-dimensional layer-stacking of carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs). This observation makes use of femtosecond broadband optical spectroscopy, ultrafast time-resolved electron diffraction, and first-principles theoretical calculations. These results reveal that near-ultraviolet photoexcitation induces an electron transfer from the conduction bands of CNT to BNNT layers via electronic decay channels. This physical process subsequently generates radial phonons in the one-dimensional vdW heterostructure material. The gathered insights unveil the fundamentals physics of interfacial interactions in low dimensional vdW heterostructures and their photoinduced dynamics, pushing their limits for photoactive multifunctional applications.

2.
Nano Lett ; 24(18): 5570-5577, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38634512

ABSTRACT

A coupled ring-waveguide structure is at the core of bosonic wave-based information processing systems, enabling advanced wave manipulations such as filtering, routing, and multiplexing. However, its miniaturization is challenging due to momentum conservation issues in rings with larger curvature that induce significant backscattering and radiation leakage and hampering stable operation. Here, we address it by taking an alternative approach of using topological technology in wavelength-scale and microwave ring-waveguide coupled systems built in nanoengineered phononic crystals. Our approach, which leverages pseudospin conservation in valley topological systems, eliminates phonon backscattering and achieves directional evanescent coupling. The resultant hypersonic waves in the tiny ring exhibit robust transport and resonant circulation. Furthermore, the ring-waveguide hybridization enables critical coupling, where valley-dependent ring-waveguide interference blocks the transmission. Our findings reveal the capability of topological phenomena for managing ultrahigh-frequency phonons in nano/microscale structures and pave the way for advanced phononic circuits in classical and quantum signal processing applications.

3.
ACS Nano ; 17(10): 9455-9467, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37127554

ABSTRACT

Transition metal dichalcogenides (TMDCs) are promising two-dimensional (2D) materials for next-generation optoelectronic devices; they can also provide opportunities for further advances in physics. Structuring 2D TMDC sheets as nanoribbons has tremendous potential for electronic state modification. However, a bottom-up synthesis of long TMDC nanoribbons with high monolayer selectivity on a large scale has not yet been reported yet. In this study, we successfully synthesized long WxOy nanowires and grew monolayer WS2 nanoribbons on their surface. The supply of source atoms from a vapor-solid bilayer and chemical reaction at the atomic-scale interface promoted a self-limiting growth process. The developed method exhibited a high monolayer selection yield on a large scale and enabled the growth of long (∼100 µm) WS2 nanoribbons with electronic properties characterized by optical spectroscopy and electrical transport measurements. The produced nanoribbons were isolated from WxOy nanowires by mechanical exfoliation and used as channels for field-effect transistors. The findings of this study can be used in future optoelectronic device applications and advanced physics research.

4.
Nano Lett ; 23(10): 4533-4540, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37155295

ABSTRACT

Janus transition metal dichalcogenides (TMDCs), with dissimilar chalcogen atoms on each side of TMDCs, have garnered considerable research attention because of the out-of-plane intrinsic polarization in monolayer TMDCs. Although a plasma process has been proposed for synthesizing Janus TMDCs based on the atomic substitution of surface atoms at room temperature, the formation dynamics and intermediate electronic states have not been completely examined. In this study, we investigated the intermediate state between MoSe2 and Janus MoSeS during plasma processing. Atomic composition analysis and atomic-scale structural observations revealed the intermediate partially substituted Janus (PSJ) structure. Combined with theoretical calculations, we successfully clarified the characteristic Raman modes in the intermediate PSJ structure. The PL exhibited discontinuous transitions that could not be explained by the theoretical calculations. These findings will contribute toward understanding the formation process and electronic-state modulation of Janus TMDCs.

5.
ACS Nano ; 16(7): 11360-11373, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35793540

ABSTRACT

Transition metal dichalcogenides (TMDCs), including MoS2 and WS2, are potential candidates for next-generation semiconducting materials owing to their atomically thin structure and strong optoelectrical responses, which allow for flexible optoelectronic applications. Monolayer TMDCs have been grown utilizing chemical vapor deposition (CVD) techniques. Enhancing the domain size with high crystallinity and forming heterostructures are important topics for practical applications. In this study, the size of monolayer WS2 increased via the vapor-liquid-solid growth-based CVD technique utilizing the confined space of the substrate-stacked microreactor. The use of spin-coated metal salts (Na2WO4 and Na2MoO4) and organosulfur vapor allowed us to precisely control the source supply and investigate the growth in a systematic manner. We obtained a relatively low activation energy for growth (1.02 eV), which is consistent with the surface diffusion-limited growth regime observed in the confined space. Through systematic photoluminescence (PL) analysis, we determined that a growth temperature of ∼820 °C is optimal for producing high-quality WS2 with a narrow PL peak width (∼35 meV). By controlling the source balance of W and S, we obtained large-sized fully monolayered WS2 (∼560 µm) and monolayer WS2 with bilayer spots (∼1100 µm). Combining two distinct sources of transition metals, WS2/MoS2 lateral heterostructures were successfully created. In electrical transport measurements, the monolayer WS2 grown under optimal conditions has a high on-current (∼70 µA/µm), on/off ratio (∼5 × 108), and a field-effect mobility of ∼7 cm2/(V s). The field-effect transistor displayed an intrinsic photoresponse with wavelength selectivity that originated from the photoexcited carriers.

6.
Sci Rep ; 10(1): 6486, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32300158

ABSTRACT

Daytime radiative cooling offers efficient passive cooling of objects by tailoring their spectral responses, holding great promise for green photonics applications. A specular reflector has been utilized in cooling devices to minimize sunlight absorption, but such a glaring surface is visually less appealing, thus undesirable for public use. Here, by exploiting strong diffuse reflection of silica nanoshells in a polymer matrix, daytime radiative cooling below the ambient temperature is experimentally demonstrated, while showing whitish color under sunlight. The cooling device consists of a poly(methyl methacrylate) layer with randomly distributed silica nanoshells and a polydimethylsiloxane (PDMS) layer on an Ag mirror. The non-resonant nanoshells exhibit uniform diffuse reflection over the solar spectrum, while fully transparent for a selective thermal radiation from the underneath PDMS layer. In the temperature measurement under the sunlight irradiation, the device shows 2.3 °C cooler than the ambient, which is comparable to or even better than the conventional device without the nanoshells. Our approach provides a simple yet powerful nanophotonic structure for realizing a scalable and practical daytime radiative cooling device without a glaring reflective surface.

7.
J Chem Phys ; 152(8): 084704, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32113336

ABSTRACT

Lead halide perovskites are promising materials for optoelectronic applications because of their exceptional performances in carrier lifetime and diffusion length; however, the microscopic origins of their unique characteristics remain elusive. The organic-inorganic hybrid perovskites show unique dielectric functions, i.e., ferroelectric-like phonon responses in the 0.1-10 THz region and liquid-like rotational relaxation in the 1-100 GHz range. To reveal the role of the dielectric responses is of primal importance because the dielectric screening is a key to understanding the optoelectronic properties governed by polarons in the perovskites. Here, we conducted comparative studies of broadband dielectric spectroscopy on both all-inorganic CsPbBr3 and organic-inorganic hybrid (CH3NH3)PbBr3 single crystals to uncover the origin of the liquid-like dielectric relaxation in the 1-100 GHz range. We confirmed the absence of the dielectric response in the range of 106-1010 Hz in CsPbBr3, which was clearly present in the hybrid (CH3NH3)PbBr3. This suggests that the response is almost purely due to the rotational motions of the organic dipoles in the hybrid perovskites. We evaluated the lifetimes of the polarons using surface-free transient photoluminescence. The lifetime in CsPbBr3 was up to 1.6 µs, while the lifetime in (CH3NH3)PbBr3 was 18 µs. The lifetime in the hybrid (CH3NH3)PbBr3 was significantly longer than in CsPbBr3, also confirmed by transient infrared spectroscopy. We concluded that the liquid-like dielectric response inhibits polaron recombination due to the efficient separation of opposite charges by the additional dynamic disorder.

8.
Nat Commun ; 10(1): 4159, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31519876

ABSTRACT

The photoisomerization of molecules is widely used to control the structure of soft matter in both natural and synthetic systems. However, the structural dynamics of the molecules during isomerization and their subsequent response are difficult to elucidate due to their complex and ultrafast nature. Herein, we describe the ultrafast formation of higher-orientation of liquid-crystalline (LC) azobenzene molecules via linearly polarized ultraviolet light (UV) using ultrafast time-resolved electron diffraction. The ultrafast orientation is caused by the trans-to-cis isomerization of the azobenzene molecules. Our observations are consistent with simplified molecular dynamics calculations that revealed that the molecules are aligned with the laser polarization axis by their cooperative motion after photoisomerization. This insight advances the fundamental chemistry of photoresponsive molecules in soft matter as well as their ultrafast photomechanical applications.

9.
ACS Nano ; 13(9): 10103-10112, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31450883

ABSTRACT

A two-dimensional nanocarbon, graphene, has attracted substantial interest due to its excellent properties. The reduction of graphene oxide (GO) has been investigated for the mass production of graphene used in practical applications. Different reduction processes produce different properties in graphene, affecting the performance of the final materials or devices. Therefore, an understanding of the mechanisms of GO reduction is important for controlling the properties of functional two-dimensional systems. Here, we determined the average structure of reduced GO prepared via heating and photoexcitation and clearly distinguished their reduction mechanisms using ultrafast time-resolved electron diffraction, time-resolved infrared vibrational spectroscopy, and time-dependent density functional theory calculations. The oxygen atoms of epoxy groups are selectively removed from the basal plane of GO by photoexcitation (photon mode), in stark contrast to the behavior observed for the thermal reduction of hydroxyl and epoxy groups (thermal mode). The difference originates from the selective excitation of epoxy bonds via an electronic transition due to their antibonding character. This work will enable the preparation of the optimum GO for the intended applications and expands the application scope of two-dimensional systems.

10.
Sci Rep ; 9(1): 1828, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755700

ABSTRACT

Certain bacteria produce iron oxide material assembled with nanoparticles (NPs) that are doped with silicon (Fe:Si ~ 3:1) in ambient environment. Such biogenous iron oxides (BIOX) proved to be an excellent electrode material for lithium-ion batteries, but underlying atomistic mechanisms remain elusive. Here, quantum molecular dynamics simulations, combined with biomimetic synthesis and characterization, show rapid charging and discharging of NP within 100 fs, with associated surface lithiation and delithiation, respectively. The rapid electric response of NP is due to the large fraction of surface atoms. Furthermore, this study reveals an essential role of Si-doping, which reduces the strength of Li-O bonds, thereby achieving more gentle and reversible lithiation culminating in enhanced cyclability of batteries. Combined with recent developments in bio-doping technologies, such fundamental understanding may lead to energy-efficient and environment-friendly synthesis of a wide variety of doped BIOX materials with customized properties.

11.
Sci Rep ; 7(1): 3205, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28600570

ABSTRACT

Plasmonic metamaterials have overcome fundamental limitations in conventional optics by their capability to engineer material resonances and dispersions at will, holding great promise for sensing applications. Recent demonstrations of metamaterial sensors, however, have mainly relied on their resonant nature for strong optical interactions with molecules, but few examples fully exploit their functionality to manipulate the polarization of light. Here, we present cross-polarized surface-enhanced infrared absorption (SEIRA) by the Fano-resonant asymmetric metamaterial allowing for strong background suppression as well as significant field enhancement. The metamaterial is designed to exhibit the controlled Fano resonance with the cross-polarization conversion property at 1730 cm-1, which spectrally overlaps with the C=O vibrational mode. In the cross-polarized SEIRA measurement, the C=O mode of poly(methyl methacrylate) molecules is clearly observed as a distinct dip within a Fano-resonant transmission peak of the metamaterial. The vibrational signal contrast is then improved based on the cross-polarized detection scheme where only the light interacting with the metamaterial-molecular coupled system is detected by totally eliminating the unwanted background light. Our metamaterial approach achieves the zeptomole sensitivity with a large signal-to-noise ratio in the far-field measurement, paving the way toward the realization of ultrasensitive IR inspection technologies.

12.
Sci Rep ; 6: 22277, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26926098

ABSTRACT

HfS2 is the novel transition metal dichalcogenide, which has not been experimentally investigated as the material for electron devices. As per the theoretical calculations, HfS2 has the potential for well-balanced mobility (1,800 cm(2)/V·s) and bandgap (1.2 eV) and hence it can be a good candidate for realizing low-power devices. In this paper, the fundamental properties of few-layer HfS2 flakes were experimentally evaluated. Micromechanical exfoliation using scotch tape extracted atomically thin HfS2 flakes with varying colour contrasts associated with the number of layers and resonant Raman peaks. We demonstrated the I-V characteristics of the back-gated few-layer (3.8 nm) HfS2 transistor with the robust current saturation. The on/off ratio was more than 10(4) and the maximum drain current of 0.2 µA/µm was observed. Moreover, using the electric double-layer gate structure with LiClO4:PEO electrolyte, the drain current of the HfS2 transistor significantly increased to 0.75 mA/µm and the mobility was estimated to be 45 cm(2)/V·s at least. This improved current seemed to indicate superior intrinsic properties of HfS2. These results provides the basic information for the experimental researches of electron devices based on HfS2.

13.
Tree Physiol ; 33(5): 550-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23640874

ABSTRACT

Understanding radial and azimuthal variation, and tree-to-tree variation, in sap flux density (Fd) as sources of uncertainty is important for estimating transpiration using sap flow techniques. In a Japanese cedar (Cryptomeria japonica D. Don.) forest, Fd was measured at several depths and aspects for 18 trees, using heat dissipation (Granier-type) sensors. We observed considerable azimuthal variation in Fd. The coefficient of variation (CV) calculated from Fd at a depth of 0-20 mm (Fd1) and Fd at a depth of 20-40 mm (Fd2) ranged from 6.7 to 37.6% (mean = 28.3%) and from 19.6 to 62.5% (mean = 34.6%) for the -azimuthal directions. Fd at the north aspect averaged for nine trees, for which azimuthal measurements were made, was -obviously smaller than Fd at the other three aspects (i.e., west, south and east) averaged for the nine trees. Fd1 averaged for the nine trees was significantly larger than Fd2 averaged for the nine trees. The error for stand-scale transpiration (E) estimates caused by ignoring the azimuthal variation was larger than that caused by ignoring the radial variation. The error caused by ignoring tree-to-tree variation was larger than that caused by ignoring both radial and azimuthal variations. Thus, tree-to-tree variation in Fd would be more important than both radial and azimuthal variations in Fd for E estimation. However, Fd for each tree should not be measured at a consistent aspect but should be measured at various aspects to make accurate E estimates and to avoid a risk of error caused by the relationship of Fd to aspect.


Subject(s)
Cryptomeria/physiology , Plant Exudates/metabolism , Plant Transpiration/physiology , Biological Transport , Circadian Rhythm/physiology , Cryptomeria/metabolism , Plant Stems/metabolism , Plant Stems/physiology , Species Specificity , Trees , Wood/metabolism , Wood/physiology , Xylem/metabolism , Xylem/physiology
14.
ISME J ; 5(4): 771-5, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20962879

ABSTRACT

Escherichia coli carrying a natural conjugative F-plasmid generates F-pili mating pairs, which is important for early biofilm formation. In this study, we investigated the effect of male-specific filamentous single stranded DNA bacteriophage (f1) and RNA bacteriophage (MS2) on the formation of biofilms by E. coli carrying a natural conjugative F-plasmid. We showed that the early biofilm formation was completely inhibited by addition of the f1 phage, but not the MS2 phage. This suggests that the tip of F-pili is the specific attachment site for mating pairs formation and the side of F-pili has a non-obligatory role during biofilm formation. The inhibitory effect of the f1 phage was dependent on the time of addition during the biofilm formation. No inhibitory effect was observed when the f1 phages were added to the mature biofilms. This resistant mechanism of the mature biofilms could be attributed to the biofilm-specific phenotypes representing that the F-pili mating pairs were already formed and then the curli production commenced during the biofilm maturation. The pre-formed mating pairs seemed to resist the f1 phages. Altogether, our results indicate a close relationship between the presence of conjugative plasmid and male-specific bacteriophages within sessile biofilm communities, as well as the possibility of using the male-specific bacteriophages to control biofilm formation.


Subject(s)
Biofilms/growth & development , Coliphages/physiology , Escherichia coli/physiology , Plasmids/physiology , Conjugation, Genetic , Escherichia coli/genetics , Escherichia coli/virology , Fimbriae, Bacterial/metabolism , Microbial Interactions , Plasmids/genetics , RNA Phages/physiology
15.
Tree Physiol ; 30(1): 129-38, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19822581

ABSTRACT

In this study, we aimed to assess how sample sizes affect confidence of stand-scale transpiration (E) estimates calculated from sap flux (F(d)) and sapwood area (A(S_tree)) measurements of individual trees. In a Japanese cypress plantation, we measured F(d) and A(S_tree) in all trees (n = 58) within a 20 x 20 m study plot, which was divided into four 10 x 10 subplots. We calculated E from stand A(S_tree) (A(S_stand)) and mean stand F(d) (J(S)) values. Using Monte Carlo analyses, we examined the potential errors associated with sample sizes in E, A(S_stand) and J(S) using the original A(S_tree) and F(d) data sets. Consequently, we defined the optimal sample sizes of 10 and 15 for A(S_stand) and J(S) estimates, respectively, in the 20 x 20 m plot. Sample sizes larger than the optimal sample sizes did not decrease potential errors. The optimal sample sizes for J(S) changed according to plot size (e.g., 10 x 10 and 10 x 20 m), whereas the optimal sample sizes for A(S_stand) did not. As well, the optimal sample sizes for J(S) did not change in different vapor pressure deficit conditions. In terms of E estimates, these results suggest that the tree-to-tree variations in F(d) vary among different plots, and that plot size to capture tree-to-tree variations in F(d) is an important factor. The sample sizes determined in this study will be helpful for planning the balanced sampling designs to extrapolate stand-scale estimates to catchment-scale estimates.


Subject(s)
Cupressus/physiology , Plant Transpiration/physiology , Trees/physiology , Japan , Monte Carlo Method , Population Density , Rain , Reproducibility of Results , Sample Size
16.
J Phys Condens Matter ; 21(4): 045502, 2009 Jan 28.
Article in English | MEDLINE | ID: mdl-21715808

ABSTRACT

A method for numerically simulating quantum systems is proposed and applied to the two-dimensional electron fluid at T = 0. This method maps quantum systems onto classical ones in the spirit of the classical-map hypernetted-chain theory and performs simulations on the latter. The results of the simulations are free from the assumption of the hypernetted-chain approximation and the neglect of the bridge diagrams. A merit of this method is the applicability to systems with geometrical complexity and finite sizes including the cases at finite temperatures. Monte Carlo and molecular dynamics simulations are performed corresponding to two previous proposals for the 'quantum' temperature and an improvement in the description of the diffraction effect. It is shown that one of these two proposals with the improved diffraction effect gives significantly better agreement with quantum Monte Carlo results reported previously for the range of 5≤r(s)≤40. These results may serve as the basis for the application of this method to finite non-periodic systems like quantum dots and systems at finite temperatures.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(3 Pt 2): 036406, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16241578

ABSTRACT

The structure of spherical clusters composed of Yukawa particles is analyzed by molecular dynamics simulations and theoretical approaches as a model for dust particles in dusty plasmas in the isotropic environment. The latter condition is expected to be realized under microgravity or by active cancellation of the effect of gravity on the ground. It is found that, at low temperatures, Yukawa particles form spherical shells and, when scaled by the mean distance, the structure is almost independent of the strength of screening including the case of the Coulomb interaction. The positions and populations of shells and the conditions for the change of the number of shells are expressed by simple interpolation formulas. Shells have an approximately equal spacing close to that of triangular lattice planes in the bulk close-packed structures. It is shown that, when the cohesive energy in each shell is properly taken into account, the shell model reproduces the structure of spherical Yukawa clusters to a good accuracy.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(4 Pt 2): 045401, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15903717

ABSTRACT

Structure formation of dust particles in dusty plasmas under microgravity has been simulated by the molecular dynamics method. It is shown that, at low temperatures, dust particles are organized into layered spherical shells. The number of shells is a function of the system size and the strength of screening by ambient plasma particles, while the dependency on the latter is much weaker. In the simulation, the condition of the charge neutrality satisfied by the system of dust particles and plasma particles is properly taken into account.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(1 Pt 2): 016405, 2004.
Article in English | MEDLINE | ID: mdl-15324176

ABSTRACT

Thermodynamic quantities of a two-dimensional Yukawa system, a model for various systems including single-layered dust particles observed in dusty plasmas, are obtained and expressed by simple interpolation formulas. In the domain of weak coupling, the analytical method based on the cluster expansion is applied and, in the domain of intermediate and strong coupling, numerical simulations are performed. Due to reduced dimensionality, the treatment based on the mean field fails at the short range and exact behavior of the binary correlation is to be taken into account even in the case of weak coupling.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(1 Pt 2): 017401, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12935290

ABSTRACT

Single-layered two-dimensional crystals of dust particles are often observed in dusty plasma experiments and the data on their structure can be obtained by analyzing the images usually taken by charge-coupled [corrected] device cameras. We give here some formulas for practical purposes of estimating the screening length and the electric charge on a dust particle from the surface density and the radius of such finite two-dimensional dust crystals. The formulas are derived on the basis of our theoretical approach which has been successful in reproducing results of molecular-dynamics simulations on dusty plasmas. An example of application is also shown.

SELECTION OF CITATIONS
SEARCH DETAIL
...