Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Small Methods ; : e2301163, 2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38044263

ABSTRACT

Electron tomography based on scanning transmission electron microscopy (STEM) is used to analyze 3D structures of metal nanoparticles on the atomic scale. However, in the case of supported metal nanoparticle catalysts, the supporting material may interfere with the 3D reconstruction of metal nanoparticles. In this study, a deep learning-based image inpainting method is applied to high-angle annular dark field (HAADF)-STEM images of a supported metal nanoparticle to predict and remove the background image of the support. The inpainting method can separate an 11 nm Pd nanoparticle from the θ-Al2 O3 support in HAADF-STEM images of the θ-Al2 O3 -supported Pd catalyst. 3D reconstruction of the extracted images of the Pd nanoparticle reveals that the Pd nanoparticle adopts a deformed structure of the cuboctahedron model particle, resulting in high index surfaces, which account for the high catalytic activity for methane combustion. Using the xyz coordinate of each Pd atom, the local Pd-Pd bond distance and its variance in a real supported Pd nanoparticle are visualized, showing large strain and disorder at the Pd-Al2 O3 interface. The results demonstrate that 3D atomic-scale analysis enables atomic structure-based understanding and design of supported metal catalysts.

2.
Small ; 19(12): e2206552, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36642836

ABSTRACT

Bandgap tunable lanthanum niobium oxynitride [LaNb2 O7-x Nx ](1+x)- nanosheet is prepared by the delamination of a Ruddlesden-Popper phase perovskite oxynitride via ion-exchange and two-step intercalation processes. The lanthanum niobium oxynitride nanosheets have a homogeneous thickness of 1.6 nm and exhibit a variety of chromatic colors depending on the nitridation temperature of the parent-layered oxynitride. The bandgap energy of the nanosheets is determined by ultraviolet photoemission spectroscopy, Mott-Schottky, and photoelectrochemical measurements and is found to be tunable in the range of 2.03-2.63 eV. Furthermore, the oxide/oxynitride superlattice structures are fabricated by face-to-face stacking of 2D crystals using oxynitride [LaNb2 O7-x Nx ](1+x)- and oxide [Ca2 Nb3 O10 ]- nanosheets as building blocks. Moreover, the superlattices-like restacked oxynitride/oxide nanosheets hybrid exhibits unique proton conductivity and dielectric properties strongly influenced by the oxynitride nanosheets and enhanced photocatalytic activity under visible light irradiation.

3.
ACS Omega ; 7(49): 44869-44877, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530265

ABSTRACT

The replacement of precious metals (Rh, Pd, and Pt) in three-way catalysts with inexpensive and earth-abundant metal alternatives is an ongoing challenge. In this research, we examined various quaternary metal catalysts by selecting from six 3d transition metals, i.e., Cr, Mn, Fe, Co, Ni, and Cu, equimolar amounts (0.1 mol each), which were prepared on the Al2O3 support (1 mol Al) using H2 reduction treatment at 900 °C. Among 15 combinations, the best catalytic performance was achieved by the CrFeNiCu system. Light-off of NO-CO-C3H6-O2-H2O mixtures proceeded at the lowest temperature of ≤200 °C for CO, ≤300 °C for C3H6, and ≤400 °C for NO when the molar fraction of Cr in Cr x Fe0.1Ni0.1Cu0.1 was around x = 0.1. The activity for CO/C3H6 oxidation was superior to that of reference Pt/Al2O3 catalysts but was less active for NO reduction. The structural analysis using scanning transmission electron microscopy and X-ray absorption spectroscopy showed that the as-prepared catalyst consisted of FeNiCu alloy nanoparticles dispersed on the Cr2O3-Al2O3 support. However, the structural change occurred under a catalytic reaction atmosphere, i.e., producing NiCu alloy nanoparticles dispersed on a NiFe2O4 moiety and Cr2O3-Al2O3 support. The oxidation of CO/C3H6 can be significantly enhanced in the presence of Cr oxide, resulting in a faster decrease in O2 concentration and thus regenerating the NiCu metallic surface, which is active for NO reduction to N2.

4.
ACS Omega ; 5(50): 32814-32822, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33376920

ABSTRACT

In the present study, we prepared a 12 nm thick Ir overlayer via pulsed cathodic arc plasma deposition on a 50 µm thick Fe-Cr-Al metal (SUS) foil. Using this thin-film catalyst made NH3-O2 reactions more environmentally benign due to a much lower selectivity for undesirable N2O (<5%) than that of a Pt overlayer (∼70%) at 225 °C. Despite its small surface area, Ir/SUS exhibited promising activity as an ammonia slip catalyst according to a turnover frequency (TOF) >70-fold greater than that observed with conventional Ir nanoparticle catalysts supported on γ-Al2O3. We found that the high-TOF NH3 oxidation was associated with the stability of the metallic Ir surface against oxidation by excess O2 present in simulated diesel exhaust. Additionally, we found that the Ir overlayer structure was thermally unstable at reaction temperatures ≥400 °C and at which point the Ir surface coverage dropped significantly; however, thermal deterioration was substantially mitigated by inserting a 250 nm thick Zr buffer layer between the Ir overlayer and the SUS foil substrate (Ir/Zr/SUS). Although N2O formation was suppressed by NH3 oxidation over Ir/Zr/SUS, other undesired byproducts (i.e., NO and NO2) were readily converted to N2 by coupling with a V2O5-WO3/TiO2 catalyst in a second reactor for selective catalytic reduction by NH3. These results demonstrated that this tandem reactor configuration converted NH3 to N2 with nearly complete selectivity at a range of 200-600 °C in the presence of excess O2 (8%) and H2O (10%).

5.
RSC Adv ; 10(37): 22120-22125, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-35516605

ABSTRACT

Many types of flexible, wearable, and disposable electronic devices have been developed as chemical and physical sensors, and many solar cells contain plastics. However, because of environmental pollution caused by microplastics, plastic use is being reduced worldwide. We have developed an enzyme-catalyzed biofuel cell utilizing cellulose nanofiber (CNF) as an electrode component. The electrode was made conductive by mixing multi-walled carbon nanotubes with the CNF. This prepared biofuel cell was wearable, flexible, hygroscopic, biodegradable, eco-friendly, and readily disposable like paper. The CNF-based enzyme-catalyzed biofuel cell contained a flavin adenine dinucleotide-dependent glucose dehydrogenase bioanode and laccase biocathode. The maximum voltage and maximum current density of the biofuel cell were 434 mV and 176 µA cm-2, respectively, at room temperature (15-18 °C). The maximum power output was 27 µW cm-2, which was converted to 483 (±13) µW cm-3.

6.
RSC Adv ; 9(71): 41392-41401, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-35541575

ABSTRACT

A platinum-loaded sulphated nanozirconia (Pt/nano ZrO2-SO4) bifunctional metal-acid catalyst was synthesized using a hydrothermal process. The nano ZrO2-SO4 was initially prepared by dispersing the nano ZrO2 in H2SO4, followed by wet impregnation via heating in an aqueous PtCl4 solution. This material was subsequently calcined and reduced under hydrogen gas to produce the catalyst. The Pt/nano ZrO2-SO4 was found to be a highly active, selective and stable solid acid catalyst for the conversion of waste low density polyethylene (LDPE) to high value hydrocarbons. The catalytic activity and stability of this material were evaluated during the hydrocracking of waste LDPE while optimizing the reaction temperature, time and catalyst-to-feed ratio. The activity of catalyst prepared by hydrothermal was attributed to highly dispersion of Pt species interacting with the support and inhibition of the agglomeration process. The impregnation method of hydrothermal generated highly active and selective catalyst with Pt loads of 1 wt%. The hydrocracking of waste LDPE over Pt/nanoZrO2-SO4 at 250 °C for 60 min with a catalyst-to-feed proportion of 1 wt% gave the largest gasoline fraction.

7.
Nanoscale ; 9(41): 16101-16105, 2017 Oct 26.
Article in English | MEDLINE | ID: mdl-29039864

ABSTRACT

Gold-coated silver nanoplates, when subjected to pulsed laser irradiation, changed their shape from triangular to spherical, accompanied by a shift of their extinction spectra. The simple single crystal structure of the silver nanoplates changed to multiple small crystal domains. The ratio of silver to gold of the particles also changed from 22 : 1 to 4.5 : 1, enabling more silver to be released. As a result, the antibacterial activity of the gold-coated silver nanoplates was significantly increased after pulsed laser irradiation.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gold , Lasers , Metal Nanoparticles , Silver/pharmacology
8.
Anal Chem ; 86(10): 5053-60, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24745930

ABSTRACT

Nondoped and N-doped SWCNTs (N-SWCNTs) were used to clarify the effect of N-doping on a direct electron transfer (DET) reaction of laccase (Lac, from Trametes sp.). The level of N-doping in the carbon phase of the N-SWCNTs, which were synthesized by a CVD method, was determined to be 0.1, 2.4, and 4.1% from X-ray photoelectron spectroscopy measurements. The N-SWCNTs were also carefully characterized using electron microscopy, Brunauer-Emmett-Teller (BET) specific surface area measurements, Raman spectroscopy, and electrochemistry. The bioelectrocatalytic current for the DET reaction of Lac immobilized onto the N-SWCNTs tended to decrease with increasing N dopant ratio, whereas the amount of Lac adsorbed per BET surface area of the N-SWCNTs did not depend on the N dopant ratio. There were two main explanations for this behavior. First, an electrostatic interaction between the positively charged interface of the N-SWCNTs due to nitrogen species surface functional groups and the negative charges of carboxylate residues surrounding the T1 site. Second, the surface potential of the N-SWCNTs during Lac modification, because the slope value of the surface potential versus N dopant ratio of the N-SWCNTs was about 53 mV/N%. From additional investigations into the surface potential effect and thermodynamic investigations, we carefully concluded that the above behaviors may be due to denaturation and/or decreasing of the DET reaction rate caused by the strong electrostatic interaction between Lac and the N-SWCNTs surface.


Subject(s)
Laccase/chemistry , Nanotubes, Carbon/chemistry , Catalysis , Enzymes, Immobilized , Models, Molecular , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL