Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
PeerJ ; 8: e9785, 2020.
Article in English | MEDLINE | ID: mdl-32884861

ABSTRACT

BACKGROUND: Cold therapy has the disadvantage of inducing vasoconstriction in arterial and venous capillaries. The effects of carbon dioxide (CO2) hot water depend mainly on not only cutaneous vasodilation but also muscle vasodilation. We examined the effects of artificial CO2 cold water immersion (CCWI) on skin oxygenation and muscle oxygenation and the immersed skin temperature. SUBJECTS AND METHODS: Fifteen healthy young males participated. CO2-rich water containing CO2 >1,150 ppm was prepared using a micro-bubble device. Each subject's single leg was immersed up to the knee in the CO2-rich water (20 °C) for 15 min, followed by a 20-min recovery period. As a control study, a leg of the subject was immersed in cold tap-water at 20 °C (CWI). The skin temperature at the lower leg under water immersion (Tsk-WI) and the subject's thermal sensation at the immersed and non-immersed lower legs were measured throughout the experiment. We simultaneously measured the relative changes of local muscle oxygenation/deoxygenation compared to the basal values (Δoxy[Hb+Mb], Δdeoxy[Hb+Mb], and Δtotal[Hb+Mb]) at rest, which reflected the blood flow in the muscle, and we measured the tissue O2 saturation (StO2) by near-infrared spectroscopy on two regions of the tibialis anterior (TA) and gastrocnemius (GAS) muscles. RESULTS: Compared to the CWI results, the Δoxy[Hb+Mb] and Δtotal[Hb+Mb] in the TA muscle at CCWI were increased and continued at a steady state during the recovery period. In GAS muscle, the Δtotal[Hb+Mb] and Δdeoxy[Hb+Mb] were increased during CCWI compared to CWI. Notably, StO2values in both TA and GAS muscles were significantly increased during CCWI compared to CWI. In addition, compared to the CWI, a significant decrease in Tsk at the immersed leg after the CCWI was maintained until the end of the 20-min recovery, and the significant reduction continued. DISCUSSION: The combination of CO2 and cold water can induce both more increased blood inflow into muscles and volume-related (total heme concentration) changes in deoxy[Hb+Mb] during the recovery period. The Tsk-WI stayed lower with the CCWI compared to the CWI, as it is associated with vasodilation by CO2.

2.
Ecotoxicol Environ Saf ; 183: 109477, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31369939

ABSTRACT

The increasing eutrophication of freshwater and brackish habitats globally has led to a corresponding increase in the occurrence of harmful cyanobacterial blooms. Cyanobacteria can produce highly toxic substances such as microcystins (MCs) that affect the health of livestock, wildlife, and humans. The present study broaden the understanding of cyanobacteria ecology and MC dynamics in the field, focusing on the estimation of the production and sedimentation rates of MCs in a natural habitat. The nutrient concentrations of the reservoir water and sediment pore water were monitored at 3-h intervals for 24 h during the summer cyanobacterial bloom. The DIN uptake rate of Microcystis in the Isahaya reservoir was estimated and the large-scale blooms in the reservoir were largely controlled by the interactions between rainfall and nutrient levels in the warm season. By using calculations based on the nitrogen budgets and tracking changes of the MC concentrations in the water column, the total MC production and sedimentation rates were estimated to be 52.2 kg MCs d-1 and 21.5 kg MCs d-1, respectively. Although MCs could be degraded in the environment, the MC sedimentation still comprised 41% of the in-water production.


Subject(s)
Bacterial Toxins/analysis , Bays/microbiology , Marine Toxins/analysis , Microcystins/analysis , Bacterial Toxins/metabolism , Bays/chemistry , Cyanobacteria Toxins , Ecosystem , Eutrophication , Geologic Sediments/chemistry , Japan , Marine Toxins/metabolism , Microcystins/metabolism , Microcystis/metabolism , Nitrogen/metabolism , Nutrients , Seasons
3.
Chemosphere ; 167: 492-500, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27756043

ABSTRACT

Freshwater cyanobacteria produce toxic microcystins (MCs), which travel from freshwater areas into the sea. The MCs produced by cyanobacteria in a freshwater reservoir were discharged frequently into the adjacent Isahaya Bay, remained in the surface sediments, and then accumulated in various macrobenthic animals on the seafloor. The MCs were transported further outside of Isahaya Bay (Ariake Bay), and the median values of the MC contents in the sediments were in the same levels in both bays, while their temporal variations were also similar during the study period. Therefore, the fluctuations of the MC contents in the surface sediments were physically controlled by the timing of the discharge from the reservoir. The MC contents in polychaetes and oysters collected in Isahaya Bay increased markedly during winter. The median values of the carbon-based MC contents in the sediments, primary consumers, and secondary consumers in the bay were 87, 160, and 250 ngMC gC-1, respectively. These results demonstrated bio-accumulation at lower trophic levels in benthic marine ecosystems. An understanding of the processes occurring between sediments and macrobenthic animals is important for clarifying MC dynamics in ecosystems.


Subject(s)
Aquatic Organisms/drug effects , Bays/chemistry , Cyanobacteria/growth & development , Ecosystem , Geologic Sediments/chemistry , Microcystins/toxicity , Animals , Bays/microbiology , Geologic Sediments/microbiology , Japan , Microcystins/analysis , Seawater/chemistry , Seawater/microbiology
4.
ScientificWorldJournal ; 2016: 6513649, 2016.
Article in English | MEDLINE | ID: mdl-27006977

ABSTRACT

Software-Defined Networking (SDN) has attracted attention along with the popularization of cloud environment and server virtualization. In SDN, the control plane and the data plane are decoupled so that the logical topology and routing control can be configured dynamically depending on network conditions. To obtain network conditions precisely, a network monitoring mechanism is necessary. In this paper, we focus on OpenFlow which is a core technology to realize SDN. We propose, design, implement, and evaluate a network monitoring system for OpenFlow networks. Our proposed system acts as a proxy between an OpenFlow controller and OpenFlow switches. Through experimental evaluations, we confirm that our proposed system can capture packets and monitor traffic information depending on administrator's configuration. In addition, we show that our proposed system does not influence significant performance degradation to overall network performance.

5.
Biomicrofluidics ; 10(1): 011902, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26858808

ABSTRACT

Superparamagnetic micro-bead chains and microswimmers under the influence of an oscillating magnetic field are studied experimentally and numerically. The numerical scheme composed of the lattice Boltzmann method, immersed boundary method, and discrete particle method based on the simplified Stokesian dynamics is applied to thoroughly understand the interaction between the micro-bead chain (or swimmer), the oscillating magnetic field, and the hydrodynamics drag. The systematic experiments and simulations demonstrated the behaviors of the microchains and microswimmers as well as the propulsive efficiencies of the swimmers. The effects of key parameters, such as field strengths, frequency, and the lengths of swimmer, are thoroughly analyzed. The numerical results are compared with the experiments and show good qualitative agreements. Our results proposed an efficient method to predict the motions of the reversible magnetic microdevices which may have extremely valuable applications in biotechnology.

6.
Mar Pollut Bull ; 92(1-2): 73-79, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25595488

ABSTRACT

Freshwater cyanobacteria produce highly toxic substances such as microcystins (MCs), and water containing MCs is often discharged to downstream and coastal areas. We conducted field monitoring in Isahaya Bay to clarify the short-term dynamics of MCs discharged from a reservoir following a cyanobacteria bloom in the warm season. MCs were detected in the seawater of the bay (max. 0.10 µg L(-1)), and were deposited on the sea floor, with the MC content of the surface sediment increasing by approximately five times (0.11±0.077-0.53±0.15 µg kgww(-1), mean±SD) at the four stations near the reservoir drainage gate before and after the discharge. The MCs was then transported from the mouth of the bay by tidal currents during the period of the study. Therefore, the MCs were moved away from the closed water area where the cyanobacteria blooms, and spread throughout the coastal area.


Subject(s)
Bacterial Toxins/analysis , Marine Toxins/analysis , Microcystins/analysis , Bays , Cyanobacteria , Cyanobacteria Toxins , Environmental Monitoring , Eutrophication , Fresh Water/microbiology , Japan , Seasons , Seawater/microbiology
7.
Mar Pollut Bull ; 89(1-2): 250-258, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25444624

ABSTRACT

In the artificial reservoir of the Isahaya reclaimed land, Nagasaki, Japan, algal blooms have become an annual event, dominated primarily by the microcystin (MC) producing cyanobacteria Microcystis aeruginosa. Although the majority of MCs are either degraded by bacteria or washed out to sea, some remain in the sediment of the reservoir and bay throughout the year. As a result, they also accumulate in aquatic organisms (mullet, oyster, etc.) that inhabit the reservoir and surrounding areas, as well as midge flies that spend their larval period in the bottom of the reservoir. Accordingly, MCs also accumulate in the predators of these organisms, allowing the toxin to spread from the hydrosphere to terrestrial ecosystems. The most effective method for resolving this potentially dangerous condition is to introduce seawater into the reservoir by opening the drainage gates at high tide.


Subject(s)
Ecosystem , Harmful Algal Bloom , Microcystins/analysis , Microcystis , Water Supply/analysis , Animals , Bays/analysis , Cyanobacteria/metabolism , Environmental Monitoring , Eutrophication , Japan , Seawater
8.
PLoS One ; 9(1): e86732, 2014.
Article in English | MEDLINE | ID: mdl-24489779

ABSTRACT

The relationship between the food demand of a clam population (Ruditapes philippinarum (Adams & Reeve 1850)) and the isotopic contributions of potential food sources (phytoplankton, benthic diatoms, and organic matter derived from the sediment surface, seagrass, and seaweeds) to the clam diet were investigated. In particular, we investigated the manner in which dense patches of clams with high secondary productivity are sustained in a coastal lagoon ecosystem (Hichirippu Lagoon) in Hokkaido, Japan. Clam feeding behavior should affect material circulation in this lagoon owing to their high secondary productivity (ca. 130 g C m(-2) yr(-1)). Phytoplankton were initially found to constitute 14-77% of the clam diet, although phytoplankton nitrogen content (1.79-4.48 kmol N) and the food demand of the clam (16.2 kmol N d(-1)) suggest that phytoplankton can constitute only up to 28% of clam dietary demands. However, use of isotopic signatures alone may be misleading. For example, the contribution of microphytobenthos (MPB) were estimated to be 0-68% on the basis of isotopic signatures but was subsequently shown to be 35 ± 13% (mean ± S.D.) and 64 ± 4% (mean ± S.D.) on the basis of phytoplankton biomass and clam food demand respectively, suggesting that MPB are the primary food source for clams. Thus, in the present study, the abundant MPB in the subtidal area appear to be a key food source for clams, suggesting that these MPB may sustain the high secondary production of the clam.


Subject(s)
Bivalvia/physiology , Ecosystem , Food , Isotope Labeling/methods , Seawater , Animals , Bivalvia/growth & development , Carbon Isotopes , Diet , Food Chain , Geography , Japan , Nitrogen Isotopes , Phytoplankton/physiology , Population Dynamics , Seasons
9.
Environ Sci Pollut Res Int ; 19(8): 3257-67, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22374190

ABSTRACT

PURPOSE: In the reservoir created in the reclaimed land in Isahaya Bay, Japan, Microcystis aeruginosa, which produces microcystins (MCs), bloomed every year, and the water with high levels of MCs in the reservoir has been often drained to Isahaya Bay to adjust the water level. The principal aims of this study are to clarify the water conditions suitable for blooming of M. aeruginosa in the reservoir, to follow the amount of distribution of MCs inside and outside the reservoir, and to discuss how blooming of M. aeruginosa is controlled in the reservoir and how MCs produced by Microcystis spread or accumulate in the aquatic environment. METHOD: We monitored the water quality (temperature, salinity, dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus) in the reservoir with seasonal blooming of microalgae including phytoplankton and M. aeruginosa using the concentrations of chlorophyll α and MCs, respectively, and collected the surface sediment in the reservoir and the bay to determine the MC content using the ELISA method. RESULT: M. aeruginosa bloomed in extremely low DIN conditions of the water in warm seasons (spring and late summer to autumn). The year-mean standing stock of MCs was approximately 34.5 kg in the water and 8.4 kg in the surface sediment in the reservoir. Approximately 64.5 kg of MCs was discharged with the effluent to the bay in a year. CONCLUSION: Since a large amount of MCs always suspends in the water in the reservoir and it has been discharged to the bay, suspension-feeding animals are exposed most seriously to the high levels of MCs occurring in these areas. We need to pay attention to the danger of widespread dispersal of MCs and biological concentration of MCs by fish and clam inside and outside the reservoir.


Subject(s)
Carcinogens/metabolism , Microcystins/metabolism , Microcystis/physiology , Bays/chemistry , Bays/microbiology , Carcinogens/analysis , Chlorophyll/analysis , Eutrophication , Geologic Sediments/microbiology , Japan , Microcystins/analysis , Microcystis/metabolism , Nitrogen Compounds/analysis , Phosphorus Compounds/analysis , Salinity , Water Quality
10.
ISME J ; 5(11): 1818-31, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21544104

ABSTRACT

We conducted bioremediation experiments on the organically enriched sediment on the sea floor just below a fish farm, introducing artificially mass-cultured colonies of deposit-feeding polychaete, Capitella sp. I. To clarify the association between the Capitella and bacteria on the efficient decomposition of the organic matter in the sediment in the experiments, we tried to identify the bacteria that increased in the microbial community in the sediment with dense patches of the Capitella. The relationship between TOC and quinone content of the sediment as an indicator of the bacterial abundance was not clear, while a significant positive correlation was found between Capitella biomass and quinone content of the sediment. In particular, ubiquinone-10, which is present in members of the class Alphaproteobacteria, increased in the sediment with dense patches of the Capitella. We performed denaturing gradient gel electrophoresis (DGGE) analyses to identify the alphaproteobacterial species in the sediment with dense patches of the worm, using two DGGE fragments obtained from the sediment samples and one fragment from the worm body. The sequences of these DGGE fragments were closely related to the specific members of the Roseobacter clade. In the associated system with the Capitella and the bacteria in the organically enriched sediment, the decomposition of the organic matter may proceed rapidly. It is very likely that the Capitella works as a promoter of bacteria in the organically enriched sediment, and feeds the increased bacteria as one of the main foods, while the bacteria decompose the organic matter in the sediment with the assistance of the Capitella.


Subject(s)
Alphaproteobacteria/isolation & purification , Geologic Sediments/microbiology , Polychaeta/microbiology , Seawater/microbiology , Animals , Benzoquinones/analysis , Biomass , Denaturing Gradient Gel Electrophoresis/methods , Geologic Sediments/chemistry , Seawater/chemistry
11.
J Invertebr Pathol ; 99(2): 212-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18602398

ABSTRACT

The pathological condition of the short-neck clam Ruditapes philippinarum was surveyed along the coast of Kumamoto, Japan, in June 2004. DNA sequences of the non-transcribed spacer region and internal transcribed spacer region flanking 5.8S rRNA identified Perkinsus olseni among the clams. Ray's fluid thioglycollate medium assay indicated that 96.7% of the clams surveyed from the Kiguchi River tidal flat (native clams, Stn KR-N) and 96.7% of the clams surveyed from the Midori River tidal flat (Stn MR) were infected with P. olseni with an infection intensity of 464,278 and 199,937 Perkinsus cells/gram tissue wet weight (gWW), respectively. In contrast, 66.7% of the clams imported from China and stored along the Kiguchi River tidal flat (Stn KR-I) and 20.2% of clams from the Arao tidal flat (Stn AT) were infected with P. olseni with an infection intensity of 37,547 and 3382 Perkinsus cells/gWW, respectively. Brown ring disease was detected in the clam population from Stn KR-I at a prevalence of 90.0%. Polymerase chain reaction and the 16S rRNA sequence suggested that the agents of brown ring disease observed at Stn KR-I were Vibrio tapetis-like bacteria. Sporocysts and metacercariae of unidentified trematodes were also observed in the gonads and mantle of the clams from Stn KR-I, Stn MR, and Stn AT, at prevalences of 7.1-42.9%. Metacestodes (larval tapeworms) were found in the foot and digestive gland at a prevalence of 52.5%, 30.0%, and 14.3% in clams from Stns MR, AT, and KR-N, respectively. Histology also showed massive hemocyte infiltration and inflammation among clams heavily infected with P. olseni. Castration of the follicle was typical among clams infected with the trematode. The data indicate that most of the clams along the coast of Kumamoto are infected with various pathogens at various rates of infection, and these pathogens could have negative effects on the clam population in the long term.


Subject(s)
Bivalvia/parasitology , Animals , Bacterial Infections/epidemiology , Bacterial Infections/pathology , Bacterial Infections/veterinary , Cestode Infections/epidemiology , Cestode Infections/pathology , Cestode Infections/veterinary , Japan , Polymerase Chain Reaction , Protozoan Infections, Animal/epidemiology , Protozoan Infections, Animal/pathology , Trematode Infections/epidemiology , Trematode Infections/pathology , Trematode Infections/veterinary
12.
Mar Pollut Bull ; 57(1-5): 86-93, 2008.
Article in English | MEDLINE | ID: mdl-18037450

ABSTRACT

A polychaete, Capitella sp. I has been shown to degrade organics actively in organically enriched sediment below fish farms. Our aim of the present study is to enhance the biological treatment of sediment by co-inoculation of Capitella sp. I with bacterial isolates that possess high degrading potential for organic matter. We isolated a total of 200 bacterial strains from fecal pellets, burrow lining, worm body, and sediment, and selected six of them for the degradation experiments in the sediment microcosms. With two out of the six isolates, tentatively identified as Vibrio sp. and Vibrio cyclitrophicus by 16SrDNA sequence, we found the TOC reduction rate was stimulated in sediment co-inoculated with the worms and each of the bacteria. In contrast, this was not observed in sediments inoculated only with the worms or the bacterium. These results strongly suggest that co-inoculation of Capitella sp. I with bacteria improves biodegradation.


Subject(s)
Bacteria/metabolism , Fisheries , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Humic Substances , Polychaeta/microbiology , Polychaeta/physiology , Animals , Bacteria/classification , Bacteria/growth & development , Bacteria/isolation & purification , Carbon/metabolism , Fisheries/methods , Humic Substances/analysis , Humic Substances/microbiology , Polychaeta/metabolism , Seawater/microbiology
13.
Mar Pollut Bull ; 57(1-5): 78-85, 2008.
Article in English | MEDLINE | ID: mdl-18036618

ABSTRACT

We have developed a "microscopic bubble generating system for the fish farm" and evaluated its ability to improve the quality of seawater and costs of it in marine cages of red sea bream (Pagrus major) in Kusuura Bay, Japan. Our results revealed that DO concentration of bubbling net pens increased and became significantly higher than the level outside the net pen (between 0.52 and 0.87 mg/L), and the whole water column was nearly saturated. Temperatures of the bubbling net pens decreased slightly between 0.08 and 0.12 degrees C in all the layers. Furthermore, micro-bubbles seemed to reach the deeper water due to the downward flow and diffusion. This study demonstrated that the microscopic bubble generating system developed in our research project could increase efficiently the dissolved oxygen concentration throughout all water layers of the fish farm. A capital and operation costs of the system is recoverable within a year.


Subject(s)
Fisheries/instrumentation , Oxygen/chemistry , Sea Bream/physiology , Animals , Diffusion , Fisheries/economics , Oxygen/analysis , Seawater/chemistry , Temperature , Water/standards , Water Movements
14.
Mar Pollut Bull ; 57(1-5): 68-77, 2008.
Article in English | MEDLINE | ID: mdl-18036622

ABSTRACT

We monitored seasonal changes of the abundance and composition of microorganisms in the fish-farm sediment in Kusuura Bay, Amakusa, Japan, using the quinone profiling technique, during bioremediation by introducing cultured colonies of polychaete, Capitella sp. I. In November 2004, approximately 9.2 million cultured worms were transferred to the fish-farm sediment, which increased rapidly, and reached 458.5 gWW/m(2) (528,000 indiv./m(2)) in March 2005. During this fast-increasing period of Capitella, the microbial quinone content of the surface sediment (0-2 cm) also increased markedly, and reached 237 micromol/m(2) in January 2005, although the water temperature decreased to the lowest levels in the year. Particularly, the mole fraction of ubiquinone-10 in total quinones in the sediment, indicating the presence of alpha subclass of Proteobacteria, increased by 9.3%. These facts suggest that the bacterial growth was enhanced markedly by the biological activities of worms in the sediment, and the bacteria played an important role in the decomposition of the organic matter in the sediment.


Subject(s)
Bacteria/growth & development , Ecosystem , Environmental Restoration and Remediation , Fisheries , Geologic Sediments/microbiology , Polychaeta/physiology , Animal Feed , Animals , Bacteria/chemistry , Benzoquinones/analysis , Benzoquinones/classification , Biomass , Carbon/analysis , Cluster Analysis , Geologic Sediments/chemistry , Oxidation-Reduction , Polychaeta/growth & development , Seasons
15.
Mar Pollut Bull ; 47(1-6): 18-24, 2003.
Article in English | MEDLINE | ID: mdl-12787592

ABSTRACT

Sediment trap experiments were carried out three times from 1999 to 2000, in the western part of the Seto Inland Sea (Suo-Sound), Japan. We investigated both the particulate flux and the composition of chemical substances in the sediment trap samples. Based on the results, we discuss the origin of particulate organic carbon (POC) collected by the sediment traps in a coastal area. Moreover, we purposed to estimate the flux of the portion of the POC that is derived from phytoplankton photosynthesis. The fluxes of POC varied between 677 and 3424 mgC m(-2) d(-1). Significant positive correlations between POC and aluminum (Al) fluxes suggested that these components show almost the same behaviour. The mean value of the Al flux was about eight times higher than that of Al burial rates on the sediment surface. Therefore, it seems that the POC flux observed with the sediment traps was considerably overestimated. Moreover, judging from the fact that Al is a typical terriginous element, it seems that most of the POC collected in the sediment traps derived from the re-suspended surface sediment or sediment transported laterally from shallow flanks such as intertidal mudflats. The fluxes of chlorophyll a (Chl a) were independent of the POC fluxes, and a relatively consistent correlation was found between Chl a abundance in the water column and the Chl a flux. Moreover, surface sediment Chl a content was approximately 100 times lower than that of suspended matter. Therefore, resuspension and terriginous contributions to Chl a collected in sediment traps are likely to be negligible. The POC content in the trap samples varied between 22.4 and 70.7 mg g(-1) dry weight. The variations of POC contents were positively correlated with the Chl a contents: POC(mg g(-1))=76.5 x Chl a(mg g(-1)) + 26.0 (r=0.95, p<0.01, n=9). This result shows that POC contents strongly corresponded with phytoplankton and their debris. It was also considered that the fraction of POC derived from phytoplankton primary production could be estimated as Chl a content times a certain factor. In this study, we estimated the flux of the portion of the POC originating from phytoplankton production by multiplying the Chl a fluxes by 76.5 (the mean POC:Chl a ratio in the trap samples). These values varied between 308 and 758 mgC m(-2) d(-1), and accounted for 35.1+/-21.2% of total POC flux. Although the amount of POC that originates from phytoplankton photosynthesis was a small portion of total POC flux, it seems to be a large portion of potential primary production in the water column.


Subject(s)
Carbon/analysis , Ecosystem , Photosynthesis , Carbon/metabolism , Environmental Monitoring , Japan , Phytoplankton/physiology , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...