Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Omega ; 7(13): 11017-11022, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35415349

ABSTRACT

We propose a rational electrode design concept for affinity biosensors based on electrochemical impedance spectroscopy to substantially suppress unexpected device-to-device variations. On the basis that the uniformity of the current distribution affects the variation, a novel micro-gap parallel plate electrode (PPE) was developed, where two planar electrodes with edges covered with a SiO2 layer were placed face to face. The structure provides a uniform current distribution over the planar electrode surface and maximizes the contribution of the planar electrode surface to sensing. For a comparative study, we also fabricated a micro-structured interdigitated electrode (IDE) that has been widely adopted for high-sensitivity measurement, although its current is highly concentrated on the electrode edge corner. Protein G (PrG) molecules were immobilized on both electrodes to prepare an immunoglobulin G (IgG) biosensor on which the specific binding of PrG-IgG can occur. We demonstrated that the IgG sensor with the PPE has small device-to-device variations, in strong contrast to the sensor with the IDE having large device-to-device variations. The results indicate that the current distribution on the electrode surface is important to fabricating electrochemical impedance spectroscopy biosensors with small device-to-device variations. Furthermore, it was found that the PPE allows ultrasensitive detection, that is, the sensor exhibited a linear range from 1 × 10-13 to 1 × 10-7 mol/L with a detection limit of 1 × 10-14 mol/L, which is a record sensitivity at low concentrations for EIS-based IgG sensors.

2.
RSC Adv ; 11(40): 24958-24967, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-35481016

ABSTRACT

A solid-state potentiometric biosensor based on the organic and inorganic mixed phase modification of a silver surface is proposed. Stabilization of the electromotive force and functionalization with biomolecules on the sensing surface were simultaneously achieved using silver chloride chemically deposited with 1,3-diaminopropanetetraacetic acid ferric ammonium salt monohydrate and a self-assembled monolayer with oligonucleotide probes, respectively. The formation of silver chloride and adsorption of alkanethiol on the silver surface were confirmed with X-ray photoelectron spectroscopy. The resulting modified surface reduced the nonspecific binding of interfering biomolecules and achieved a high signal to noise ratio. The electromotive forces of the modified silver thin film electrodes were stable under constant chloride ion concentrations. Hybridization assays were performed to detect microRNA 146. The lower limit of detection was 0.1 pM because of the small standard deviation. The proposed biosensor could be useful as a disposable single-use sensor in medical fields such as liquid biopsies.

3.
ACS Appl Mater Interfaces ; 12(7): 8533-8538, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32027115

ABSTRACT

Bubbles at the interface of two-dimensional layered materials in van der Waals heterostructures cause deterioration in the quality of materials, thereby limiting the size and design of devices. In this paper, we report a simple all-dry transfer technique, with which the bubble formation can be avoided. As a key factor in the technique, a contact angle between a picked-up flake on a viscoelastic polymer stamp and another flake on a substrate was introduced by protrusion at the stamp surface. Using this technique, we demonstrated the fabrication of high-quality devices on the basis of graphene/hexagonal boron nitride heterostructures with a large bubble-free region. Additionally, the technique can be used to remove unnecessary flakes on a substrate under an optical microscopic scale. Most importantly, it improves the yield and throughput for the fabrication process of high-quality van der Waals heterostructure-based devices.

4.
Sci Adv ; 4(5): eaaq0194, 2018 05.
Article in English | MEDLINE | ID: mdl-29795780

ABSTRACT

In graphene superlattices, bulk topological currents can lead to long-range charge-neutral flow and nonlocal resistance near Dirac points. A ballistic version of these phenomena has never been explored. We report transport properties of ballistic graphene superlattices. This allows us to study and exploit giant nonlocal resistances with a large valley Hall angle without a magnetic field. In a low-temperature regime, a crossover occurs toward a new state of matter, referred to as a quantum valley Hall state (qVHS), which is an analog of the quantum Hall state without a magnetic field. Furthermore, a nonlocal resistance plateau, implying rigidity of the qVHS, emerges as a function of magnetic field, and this plateau collapses, which is considered a manifestation of valley/pseudospin magnetism.

5.
ACS Appl Mater Interfaces ; 6(20): 17410-5, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25259873

ABSTRACT

An oleic acid-coated Fe2.7Co0.3O4 nanocrystal (NC) self-assembled film was fabricated via drop casting of colloidal particles onto a three-terminal electrode/MgO substrate. The film exhibited a large coercivity (1620 Oe) and bifurcation of the zero-field-cooled and field-cooled magnetizations at 300 K. At 10 K, the film exhibited both a Coulomb blockade due to single electron charging as well as a magnetoresistance of ∼-80% due to spin-dependent electron tunneling. At 300 K, the film also showed a magnetoresistance of ∼-80% due to hopping of spin-polarized electrons. Enhanced magnetic coupling between adjacent NCs and the large coercivity resulted in a large spin-polarized current flow even at 300 K.

6.
Opt Express ; 21(5): 6153-61, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482183

ABSTRACT

A stacked metal-dielectric hole array (SHA) containing rectangular holes whose shape gradually varies in-plane is proposed as a means of achieving wavefront control. The dependence of the transmitted phase on the frequency can be tuned by the hole shape, in particular the length of the sides that are normal to the incident polarization. The combination of periodic holes along the polarization direction and the gradual change in hole shape normal to the polarization direction produce an inclined wavefront for 1-dimensional beam steering. An in-plane phase difference of 0.6π using an SHA with a thickness of one-sixth of the wavelength has been experimentally demonstrated.

7.
Biosens Bioelectron ; 40(1): 422-6, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-22917917

ABSTRACT

Interdigitated electrodes (IDEs) that have a series of parallel microband electrodes with alternating microbands connected together were utilized in electrochemical impedance spectroscopy (EIS) to build a label-free human immunoglobulin A (IgA) immunosensor. Anti-human IgA (anti-IgA) was employed as an IgA receptor and was covalently immobilized on the IDE surface through a self-assembled monolayer, as confirmed by atomic force microscopy. EIS measurements revealed that the specific adsorption of IgA onto the immobilized anti-IgA gave rise to a clear increase in the value of interfacial charge transfer resistance (R(ct)). A linear relationship between ΔR(ct) and the logarithm of IgA concentration was found for the concentration range of 0.01-100 ng/mL. No modulation of R(ct) was detected by immersing the sensor in solutions of other proteins such as human immunoglobulin G or bovine serum albumin, which confirmed a high selectivity of this immunosensor for IgA. These results demonstrated that the anti-IgA receptor simply immobilized on the IDE surface can provide a sensitive biosensor.


Subject(s)
Biosensing Techniques/instrumentation , Conductometry/instrumentation , Dielectric Spectroscopy/instrumentation , Electrodes , Immunoassay/instrumentation , Immunoglobulin G/blood , Equipment Design , Equipment Failure Analysis , Humans , Reproducibility of Results , Sensitivity and Specificity
8.
Opt Lett ; 37(14): 2793-5, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22825136

ABSTRACT

We carried out an experimental and numerical investigation of photoinduced voltage at normal incidence in the nondiffraction regime, which was not predicted to occur by the simple momentum conservation model. We prepared two samples: one having space inversion symmetry and the other without this feature. At normal incidence in the nondiffraction regime, we observed a finite signal only for the asymmetric structure. We found that surface plasmon polaritons (SPPs) are excited by the signal and are attributed to the origin of the voltage. We also evaluated the radiation force of light by using the Maxwell stress tensor and found that pressure of light and not shear force is mainly induced in the structure due to the asymmetric excitation of SPPs.

9.
Opt Express ; 20(14): 16092-103, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22772300

ABSTRACT

Transmission phase control is experimentally demonstrated using stacked metal-dielectric hole arrays with a two-dimensional geometric design. The transmission phase varies drastically with small frequency shifts due to structural resonances. Laterally propagating surface plasmon polaritons excited by the periodic hole array roughly determine the resonance frequency, whereas localized resonances in each hole determine the dispersion. The transmission phase at various frequencies is directly evaluated using interferometric microscopy, and the formation of an inclined wavefront is demonstrated using a beam steering element in which the hole shapes gradually change in-plane from square to circular.

10.
Biomed Microdevices ; 13(4): 725-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21479536

ABSTRACT

Non-viral system generally demonstrates less efficacious in transgene delivery than viral system; however it represents a safer alternative to viral system. In this study, transfection efficiency for human hepatocellular liver carcinoma cells synchronized in cell cycle at G0/G1 phase, which was sorted in size with a microfluidic device based on hydrodynamic filtration, was investigated by using a reverse transfection method. The synchronized cells were recovered at the yield of 80% from the micro-channel, and green fluorescent protein gene encoding plasmid mixed with lipofectoamine was transfected. The transfection efficiency of the cells at G0/G1 phase was 1.8 times higher than non-synchronized cells. The manipulation of cell cycle status could increase transfection efficiency in non-viral system, indicating size-based cell cycle synchronization is a powerful tool as a noninvasive method for bioscience and biotechnology.


Subject(s)
G1 Phase/genetics , Microfluidic Analytical Techniques/instrumentation , Resting Phase, Cell Cycle/genetics , Transfection/methods , Cell Adhesion , Cell Separation , Equipment Design , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hep G2 Cells , Humans , Hydrodynamics , Microfluidic Analytical Techniques/methods , Plasmids , Transgenes
11.
Sci Technol Adv Mater ; 11(5): 054601, 2010 Oct.
Article in English | MEDLINE | ID: mdl-27877364

ABSTRACT

We describe our recent experimental results on the fabrication of quantum-dot devices in a graphene-based two-dimensional system. Graphene samples were prepared by micromechanical cleavage of graphite crystals on a SiO2/Si substrate. We performed micro-Raman spectroscopy measurements to determine the number of layers of graphene flakes during the device fabrication process. By applying a nanofabrication process to the identified graphene flakes, we prepared a double-quantum-dot device structure comprising two lateral quantum dots coupled in series. Measurements of low-temperature electrical transport show the device to be a series-coupled double-dot system with varied interdot tunnel coupling, the strength of which changes continuously and non-monotonically as a function of gate voltage.

12.
Nano Lett ; 9(8): 2891-6, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19719107

ABSTRACT

We present an experimental demonstration of a graphene-based double quantum dot system, which exhibits single-electron transport of two lateral quantum dots coupled in series. Low-temperature transport measurements revealed honeycomb charge stability diagrams with a varied (from weak to strong) interdot tunnel-coupling regime, and we have extracted the relevant parameters associated with the double quantum dot system. These results are important for the realization of integrated quantum circuits in graphene-based electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...