Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891898

ABSTRACT

The consequences of stroke include cognitive deficits and sensorimotor disturbances, which are largely related to mitochondrial impairments in the brain. In this work, we have shown that the mimetic of the ketogenic diet beta-hydroxybutyrate (ßHB) can improve neurological brain function in stroke. At 3 weeks after photothrombotic stroke, mice receiving ßHB with drinking water before and after surgery recovered faster in terms of sensorimotor functions assessed by the string test and static rods and cognitive functions assessed by the Morris water maze. At the same time, the ßHB-treated mice had lower expression of some markers of astrocyte activation and inflammation (Gfap, Il-1b, Tnf). We hypothesize that long-term administration of ßHB promotes the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway, which leads to increased expression of antioxidant genes targeting mitochondria and genes involved in signaling pathways necessary for the maintenance of synaptic plasticity. ßHB partially maintained mitochondrial DNA (mtDNA) integrity during the first days after photothrombosis. However, in the following three weeks, the number of mtDNA damages increased in all experimental groups, which coincided with a decrease in Ogg1 expression, which plays an important role in mtDNA repair. Thus, we can assume that ßHB is not only an important metabolite that provides additional energy to brain tissue during recovery from stroke under conditions of mitochondrial damage but also an important signaling molecule that supports neuronal plasticity and reduces neuroinflammation.


Subject(s)
3-Hydroxybutyric Acid , Cognitive Dysfunction , Ischemic Stroke , Animals , Mice , 3-Hydroxybutyric Acid/pharmacology , 3-Hydroxybutyric Acid/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/complications , Male , Disease Models, Animal , NF-E2-Related Factor 2/metabolism , DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Thrombosis/metabolism , Thrombosis/etiology , Brain/metabolism , Brain/drug effects , Brain/pathology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...