Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 13(6): e0027924, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38767349

ABSTRACT

Rhizobium laguerreae is regarded as a promising candidate for biofertilization of legume plants worldwide through its high efficiency in symbiosis. In this paper, we report high-quality sequences of six R. laguerreae strains with total genome completeness from 93.5% to 97.5%.

2.
Int J Mol Sci ; 24(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138973

ABSTRACT

Despite global warming, the influence of heat on symbiotic nodules is scarcely studied. In this study, the effects of heat stress on the functioning of nodules formed by Rhizobium leguminosarum bv. viciae strain 3841 on pea (Pisum sativum) line SGE were analyzed. The influence of elevated temperature was analyzed at histological, ultrastructural, and transcriptional levels. As a result, an unusual apical pattern of nodule senescence was revealed. After five days of exposure, a senescence zone with degraded symbiotic structures was formed in place of the distal nitrogen fixation zone. There was downregulation of various genes, including those associated with the assimilation of fixed nitrogen and leghemoglobin. After nine days, the complete destruction of the nodules was demonstrated. It was shown that nodule recovery was possible after exposure to elevated temperature for 3 days but not after 5 days (which coincides with heat wave duration). At the same time, the exposure of plants to optimal temperature during the night leveled the negative effects. Thus, the study of the effects of elevated temperature on symbiotic nodules using a well-studied pea genotype and Rhizobium strain led to the discovery of a novel positional response of the nodule to heat stress.


Subject(s)
Rhizobium leguminosarum , Rhizobium , Pisum sativum , Temperature , Rhizobium leguminosarum/genetics , Rhizobium/genetics , Nitrogen Fixation/genetics , Symbiosis/physiology
3.
Int J Mol Sci ; 24(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37762151

ABSTRACT

Different components of the symbiotic interface play an important role in providing positional information during rhizobial infection and nodule development: successive changes in cell morphology correspond to subsequent changes in the molecular architecture of the apoplast and the associated surface structures. The localisation and distribution of pectins, xyloglucans, and cell wall proteins in symbiotic nodules of Pisum sativum and Medicago truncatula were studied using immunofluorescence and immunogold analysis in wild-type and ineffective mutant nodules. As a result, the ontogenetic changes in the symbiotic interface in the nodules of both species were described. Some differences in the patterns of distribution of cell wall polysaccharides and proteins between wild-type and mutant nodules can be explained by the activation of defence reaction or premature senescence in mutants. The absence of fucosylated xyloglucan in the cell walls in the P. sativum nodules, as well as its predominant accumulation in the cell walls of uninfected cells in the M. truncatula nodules, and the presence of the rhamnogalacturonan I (unbranched) backbone in meristematic cells in P. sativum can be attributed to the most striking species-specific features of the symbiotic interface.


Subject(s)
Medicago truncatula , Medicago truncatula/genetics , Pisum sativum/genetics , Cell Wall , Meristem , Nitrogen
4.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240010

ABSTRACT

Triazole fungicides are widely used in agricultural production for plant protection, including pea (Pisum sativum L.). The use of fungicides can negatively affect the legume-Rhizobium symbiosis. In this study, the effects of triazole fungicides Vintage and Titul Duo on nodule formation and, in particular, on nodule morphology, were studied. Both fungicides at the highest concentration decreased the nodule number and dry weight of the roots 20 days after inoculation. Transmission electron microscopy revealed the following ultrastructural changes in nodules: modifications in the cell walls (their clearing and thinning), thickening of the infection thread walls with the formation of outgrowths, accumulation of poly-ß-hydroxybutyrates in bacteroids, expansion of the peribacteroid space, and fusion of symbiosomes. Fungicides Vintage and Titul Duo negatively affect the composition of cell walls, leading to a decrease in the activity of synthesis of cellulose microfibrils and an increase in the number of matrix polysaccharides of cell walls. The results obtained coincide well with the data of transcriptomic analysis, which revealed an increase in the expression levels of genes that control cell wall modification and defense reactions. The data obtained indicate the need for further research on the effects of pesticides on the legume-Rhizobium symbiosis in order to optimize their use.


Subject(s)
Fabaceae , Fungicides, Industrial , Rhizobium , Pisum sativum/chemistry , Fungicides, Industrial/pharmacology , Symbiosis/genetics , Rhizobium/genetics
5.
Front Plant Sci ; 13: 1014699, 2022.
Article in English | MEDLINE | ID: mdl-36388578

ABSTRACT

Amyloids represent protein aggregates with highly ordered fibrillar structure associated with the development of various disorders in humans and animals and involved in implementation of different vital functions in all three domains of life. In prokaryotes, amyloids perform a wide repertoire of functions mostly attributed to their interactions with other organisms including interspecies interactions within bacterial communities and host-pathogen interactions. Recently, we demonstrated that free-living cells of Rhizobium leguminosarum, a nitrogen-fixing symbiont of legumes, produce RopA and RopB which form amyloid fibrils at cell surface during the stationary growth phase thus connecting amyloid formation and host-symbiont interactions. Here we focused on a more detailed analysis of the RopB amyloid state in vitro and in vivo, during the symbiotic interaction between R. leguminosarum bv. viciae with its macrosymbiont, garden pea (Pisum sativum L.). We confirmed that RopB is the bona fide amyloid protein since its fibrils exhibit circular x-ray reflections indicating its cross-ß structure specific for amyloids. We found that fibrils containing RopB and exhibiting amyloid properties are formed in vivo at the surface of bacteroids of R. leguminosarum extracted from pea nodules. Moreover, using pea sym31 mutant we demonstrated that formation of extracellular RopB amyloid state occurs at different stages of bacteroid development but is enhanced in juvenile symbiosomes. Proteomic screening of potentially amyloidogenic proteins in the nodules revealed the presence of detergent-resistant aggregates of different plant and bacterial proteins including pea amyloid vicilin. We demonstrated that preformed vicilin amyloids can cross-seed RopB amyloid formation suggesting for probable interaction between bacterial and plant amyloidogenic proteins in the nodules. Taken together, we demonstrate that R. leguminosarum bacteroids produce extracellular RopB amyloids in pea nodules in vivo and these nodules also contain aggregates of pea vicilin amyloid protein, which is able to cross-seed RopB fibrillogenesis in vitro. Thus, we hypothesize that plant nodules contain a complex amyloid network consisting of plant and bacterial amyloids and probably modulating host-symbiont interactions.

6.
Front Plant Sci ; 13: 884726, 2022.
Article in English | MEDLINE | ID: mdl-36186063

ABSTRACT

Various legume plants form root nodules in which symbiotic bacteria (rhizobia) fix atmospheric nitrogen after differentiation into a symbiotic form named bacteroids. In some legume species, bacteroid differentiation is promoted by defensin-like nodule-specific cysteine-rich (NCR) peptides. NCR peptides have best been studied in the model legume Medicago truncatula Gaertn., while in many other legumes relevant information is still fragmentary. Here, we characterize the NCR gene family in pea (Pisum sativum L.) using genomic and transcriptomic data. We found 360 genes encoding NCR peptides that are expressed in nodules. The sequences of pea NCR genes and putative peptides are highly variable and differ significantly from NCR sequences of M. truncatula. Indeed, only one pair of orthologs (PsNCR47-MtNCR312) has been identified. The NCR genes in the pea genome are located in clusters, and the expression patterns of NCR genes from one cluster tend to be similar. These data support the idea of independent evolution of NCR genes by duplication and diversification in related legume species. We also described spatiotemporal expression profiles of NCRs and identified specific transcription factor (TF) binding sites in promoters of "early" and "late" NCR genes. Further, we studied the expression of NCR genes in nodules of Fix- mutants and predicted potential regulators of NCR gene expression, one among them being the TF ERN1 involved in the early steps of nodule organogenesis. In general, this study contributes to understanding the functions of NCRs in legume nodules and contributes to understanding the diversity and potential antibiotic properties of pea nodule-specific antimicrobial molecules.

7.
Front Plant Sci ; 13: 823183, 2022.
Article in English | MEDLINE | ID: mdl-35557719

ABSTRACT

Plant cell differentiation is based on rearrangements of the tubulin cytoskeleton; this is also true for symbiotic nodules. Nevertheless, although for indeterminate nodules (with a long-lasting meristem) the organization of microtubules during nodule development has been studied for various species, for determinate ones (with limited meristem activity) such studies are rare. Here, we investigated bacteroid morphology and dynamics of the tubulin cytoskeleton in determinate nodules of four legume species: Glycine max, Glycine soja, Phaseolus vulgaris, and Lotus japonicus. The most pronounced differentiation of bacteroids was observed in G. soja nodules. In meristematic cells in incipient nodules of all analyzed species, the organization of both cortical and endoplasmic microtubules was similar to that described for meristematic cells of indeterminate nodules. In young infected cells in developing nodules of all four species, cortical microtubules formed irregular patterns (microtubules were criss-crossed) and endoplasmic ones were associated with infection threads and infection droplets. Surprisingly, in uninfected cells the patterns of cortical microtubules differed in nodules of G. max and G. soja on the one hand, and P. vulgaris and L. japonicus on the other. The first two species exhibited irregular patterns, while the remaining two exhibited regular ones (microtubules were oriented transversely to the longitudinal axis of cell) that are typical for uninfected cells of indeterminate nodules. In contrast to indeterminate nodules, in mature determinate nodules of all four studied species, cortical microtubules formed a regular pattern in infected cells. Thus, our analysis revealed common patterns of tubulin cytoskeleton in the determinate nodules of four legume species, and species-specific differences were associated with the organization of cortical microtubules in uninfected cells. When compared with indeterminate nodules, the most pronounced differences were associated with the organization of cortical microtubules in nitrogen-fixing infected cells. The revealed differences indicated a possible transition during evolution of infected cells from anisotropic growth in determinate nodules to isodiametric growth in indeterminate nodules. It can be assumed that this transition provided an evolutionary advantage to those legume species with indeterminate nodules, enabling them to host symbiosomes in their infected cells more efficiently.

8.
Front Plant Sci ; 13: 843565, 2022.
Article in English | MEDLINE | ID: mdl-35432395

ABSTRACT

In this study, the roles of glutathione (GSH), homoglutathione (hGSH), and their ratio in symbiotic nodule development and functioning, as well as in defense responses accompanying ineffective nodulation in pea (Pisum sativum) were investigated. The expression of genes involved in (h)GSH biosynthesis, thiol content, and localization of the reduced form of GSH were analyzed in nodules of wild-type pea plants and mutants sym33-3 (weak allele, "locked" infection threads, occasional bacterial release, and defense reactions) and sym33-2 (strong allele, "locked" infection threads, defense reactions), and sym40-1 (abnormal bacteroids, oxidative stress, early senescence, and defense reactions). The effects of (h)GSH depletion and GSH treatment on nodule number and development were also examined. The GSH:hGSH ratio was found to be higher in nodules than in uninoculated roots in all genotypes analyzed, with the highest value being detected in wild-type nodules. Moreover, it was demonstrated, that a hGSHS-to-GSHS switch in gene expression in nodule tissue occurs only after bacterial release and leads to an increase in the GSH:hGSH ratio. Ineffective nodules showed variable GSH:hGSH ratios that correlated with the stage of nodule development. Changes in the levels of both thiols led to the activation of defense responses in nodules. The application of a (h)GSH biosynthesis inhibitor disrupted the nitrogen fixation zone in wild-type nodules, affected symbiosome formation in sym40-1 mutant nodules, and meristem functioning and infection thread growth in sym33-3 mutant nodules. An increase in the levels of both thiols following GSH treatment promoted both infection and extension of defense responses in sym33-3 nodules, whereas a similar increase in sym40-1 nodules led to the formation of infected cells resembling wild-type nitrogen-fixing cells and the disappearance of an early senescence zone in the base of the nodule. Meanwhile, an increase in hGSH levels in sym40-1 nodules resulting from GSH treatment manifested as a restriction of infection similar to that seen in untreated sym33-3 nodules. These findings indicated that a certain level of thiols is required for proper symbiotic nitrogen fixation and that changes in thiol content or the GSH:hGSH ratio are associated with different abnormalities and defense responses.

9.
Cells ; 10(5)2021 04 29.
Article in English | MEDLINE | ID: mdl-33946779

ABSTRACT

The intracellular infection thread initiated in a root hair cell is a unique structure associated with Rhizobium-legume symbiosis. It is characterized by inverted tip growth of the plant cell wall, resulting in a tunnel that allows invasion of host cells by bacteria during the formation of the nitrogen-fixing root nodule. Regulation of the plant-microbial interface is essential for infection thread growth. This involves targeted deposition of the cell wall and extracellular matrix and tight control of cell wall remodeling. This review describes the potential role of different actors such as transcription factors, receptors, and enzymes in the rearrangement of the plant-microbial interface and control of polar infection thread growth. It also focuses on the composition of the main polymers of the infection thread wall and matrix and the participation of reactive oxygen species (ROS) in the development of the infection thread. Mutant analysis has helped to gain insight into the development of host defense reactions. The available data raise many new questions about the structure, function, and development of infection threads.


Subject(s)
Fabaceae/microbiology , Rhizobium/pathogenicity , Symbiosis , Fabaceae/genetics , Fabaceae/metabolism , Host-Pathogen Interactions , Rhizobium/metabolism , Rhizosphere
10.
Cells ; 10(5)2021 04 25.
Article in English | MEDLINE | ID: mdl-33923032

ABSTRACT

The tubulin cytoskeleton plays an important role in establishing legume-rhizobial symbiosis at all stages of its development. Previously, tubulin cytoskeleton organization was studied in detail in the indeterminate nodules of two legume species, Pisum sativum and Medicago truncatula. General as well as species-specific patterns were revealed. To further the understanding of the formation of general and species-specific microtubule patterns in indeterminate nodules, the tubulin cytoskeleton organization was studied in three legume species (Vicia sativa, Galega orientalis, and Cicer arietinum). It is shown that these species differ in the shape and size of rhizobial cells (bacteroids). Immunolocalization of microtubules revealed the universality of cortical and endoplasmic microtubule organization in the meristematic cells, infected cells of the infection zone, and uninfected cells in nodules of the three species. However, there are differences in the endoplasmic microtubule organization in nitrogen-fixing cells among the species, as confirmed by quantitative analysis. It appears that the differences are linked to bacteroid morphology (both shape and size).


Subject(s)
Cytoskeleton/physiology , Fabaceae/physiology , Microtubules/metabolism , Rhizobium/physiology , Root Nodules, Plant/microbiology , Symbiosis , Tubulin/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/microbiology , Fabaceae/classification , Nitrogen Fixation , Species Specificity
11.
Plants (Basel) ; 9(12)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317178

ABSTRACT

Analyses of natural variation and the use of mutagenesis and molecular-biological approaches have revealed 50 symbiotic regulatory genes in pea (Pisum sativum L.). Studies of genomic synteny using model legumes, such as Medicago truncatula Gaertn. and Lotus japonicus (Regel) K. Larsen, have identified the sequences of 15 symbiotic regulatory genes in pea. These genes encode receptor kinases, an ion channel, a calcium/calmodulin-dependent protein kinase, transcription factors, a metal transporter, and an enzyme. This review summarizes and describes mutant alleles, their phenotypic manifestations, and the functions of all identified symbiotic regulatory genes in pea. Some examples of gene interactions are also given. In the review, all mutant alleles in genes with identified sequences are designated and still-unidentified symbiotic regulatory genes of great interest are considered. The identification of these genes will help elucidate additional components involved in infection thread growth, nodule primordium development, bacteroid differentiation and maintenance, and the autoregulation of nodulation. The significance of symbiotic mutants of pea as extremely fruitful genetic models for studying nodule development and for comparative cell biology studies of legume nodules is clearly demonstrated. Finally, it is noted that many more sequences of symbiotic regulatory genes remain to be identified. Transcriptomics approaches and genome-wide sequencing could help address this challenge.

12.
Plants (Basel) ; 9(11)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158267

ABSTRACT

In Russia, tetramethylthiuram disulfide (TMTD) is a fungicide widely used in the cultivation of legumes, including the pea (Pisum sativum). Application of TMTD can negatively affect nodulation; nevertheless, its effect on the histological and ultrastructural organization of nodules has not previously been investigated. In this study, the effect of TMTD at three concentrations (0.4, 4, and 8 g/kg) on nodule development in three pea genotypes (laboratory lines Sprint-2 and SGE, and cultivar 'Finale') was examined. In SGE, TMTD at 0.4 g/kg reduced the nodule number and shoot and root fresh weights. Treatment with TMTD at 8 g/kg changed the nodule color from pink to green, indicative of nodule senescence. Light and transmission electron microscopy analyses revealed negative effects of TMTD on nodule structure in each genotype. 'Finale' was the most sensitive cultivar to TMTD and Sprint-2 was the most tolerant. The negative effects of TMTD on nodules included the appearance of a senescence zone, starch accumulation, swelling of cell walls accompanied by a loss of electron density, thickening of the infection thread walls, symbiosome fusion, and bacteroid degradation. These results demonstrate how TMTD adversely affects nodules in the pea and will be useful for developing strategies to optimize fungicide use on legume crops.

13.
Ann Bot ; 125(6): 905-923, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32198503

ABSTRACT

BACKGROUND AND AIMS: Recent findings indicate that Nod factor signalling is tightly interconnected with phytohormonal regulation that affects the development of nodules. Since the mechanisms of this interaction are still far from understood, here the distribution of cytokinin and auxin in pea (Pisum sativum) nodules was investigated. In addition, the effect of certain mutations blocking rhizobial infection and subsequent plant cell and bacteroid differentiation on cytokinin distribution in nodules was analysed. METHODS: Patterns of cytokinin and auxin in pea nodules were profiled using both responsive genetic constructs and antibodies. KEY RESULTS: In wild-type nodules, cytokinins were found in the meristem, infection zone and apical part of the nitrogen fixation zone, whereas auxin localization was restricted to the meristem and peripheral tissues. We found significantly altered cytokinin distribution in sym33 and sym40 pea mutants defective in IPD3/CYCLOPS and EFD transcription factors, respectively. In the sym33 mutants impaired in bacterial accommodation and subsequent nodule differentiation, cytokinin localization was mostly limited to the meristem. In addition, we found significantly decreased expression of LOG1 and A-type RR11 as well as KNOX3 and NIN genes in the sym33 mutants, which correlated with low cellular cytokinin levels. In the sym40 mutant, cytokinins were detected in the nodule infection zone but, in contrast to the wild type, they were absent in infection droplets. CONCLUSIONS: In conclusion, our findings suggest that enhanced cytokinin accumulation during the late stages of symbiosis development may be associated with bacterial penetration into the plant cells and subsequent plant cell and bacteroid differentiation.


Subject(s)
Infections , Rhizobium , Cell Differentiation , Cytokinins , Gene Expression Regulation, Plant , Humans , Mutation , Pisum sativum , Plant Cells , Plant Roots , Symbiosis
14.
Front Microbiol ; 11: 15, 2020.
Article in English | MEDLINE | ID: mdl-32063892

ABSTRACT

Two transgenic strains of Rhizobium leguminosarum bv. viciae, 3841-PsMT1 and 3841-PsMT2, were obtained. These strains contain the genetic constructions nifH-PsMT1 and nifH-PsMT2 coding for two pea (Pisum sativum L.) metallothionein genes, PsMT1 and PsMT2, fused with the promoter region of the nifH gene. The ability of both transgenic strains to form nodules on roots of the pea wild-type SGE and the mutant SGECdt, which is characterized by increased tolerance to and accumulation of cadmium (Cd) in plants, was analyzed. Without Cd treatment, the wild type and mutant SGECdt inoculated with R. leguminosarum strains 3841, 3841-PsMT1, or 3841-PsMT2 were similar histologically and in their ultrastructural organization of nodules. Nodules of wild-type SGE inoculated with strain 3841 and exposed to 0.5 µM CdCl2 were characterized by an enlarged senescence zone. It was in stark contrast to Cd-treated nodules of the mutant SGECdt that maintained their proper organization. Cadmium treatment of either wild-type SGE or mutant SGECdt did not cause significant alterations in histological organization of nodules formed by strains 3841-PsMT1 and 3841-PsMT2. Although some abnormalities were observed at the ultrastructural level, they were less pronounced in the nodules of strain 3841-PsMT1 than in those formed by 3841-PsMT2. Both transgenic strains also differed in their effects on pea plant growth and the Cd and nutrient contents in shoots. In our opinion, combination of Cd-tolerant mutant SGECdt and the strains 3841-PsMT1 or 3841-PsMT2 may be used as an original model for study of Cd tolerance mechanisms in legume-rhizobial symbiosis and possibilities for its application in phytoremediation or phytostabilization technologies.

15.
Front Plant Sci ; 10: 285, 2019.
Article in English | MEDLINE | ID: mdl-30930920

ABSTRACT

The development of nitrogen-fixing nodules formed during Rhizobium-legume symbiosis is strongly controlled by phytohormones. In this study, we investigated the effect of gibberellins (GAs) on senescence of pea (Pisum sativum) symbiotic nodules. Pea wild-type line SGE, as well as corresponding mutant lines SGEFix--1 (sym40), SGEFix--2 (sym33), SGEFix--3 (sym26), and SGEFix--7 (sym27), blocked at different stages of nodule development, were used in the study. An increase in expression of the GA2ox1 gene, encoding an enzyme involved in GA deactivation (GA 2-oxidase), and a decrease in the transcript abundance of the GA20ox1 gene, encoding one of the enzymes involved in GA biosynthesis (GA 20-oxidase), were observed in analyzed genotypes during nodule aging. A reduction in the amount of bioactive GA3 was demonstrated by immunolocalization in the early senescent mutant and wild-type lines during aging of symbiotic nodules. Down-regulated expression of senescence-associated genes encoding cysteine proteases 1 and 15a, thiol protease, bZIP transcription factor, 1-aminocyclopropane-1-carboxylate (ACC) synthase, ACC oxidase, and aldehyde oxidase was observed in the nodules of wild-type plants treated with exogenous GA3 relative to the untreated plants. GA3-treated plants also showed increases in nodule size and the nitrogen fixation zone, and decreases in the number of nodules and the senescence zone. Immunogold localization revealed higher levels of GA3 in the peribacteroid spaces in symbiosomes than in the matrix of infection threads. Furthermore, a decrease in GA3 label in mature and senescent symbiosomes in comparison with juvenile symbiosomes was observed. These results suggest a negative effect of GAs on the senescence of the pea symbiotic nodule and possible involvement of GAs in functioning of the mature nodule. Simultaneously, GA3 treatment led to nodule meristem bifurcation, indicating a possible role of GAs in nodule meristem functioning.

16.
Protoplasma ; 256(5): 1449-1453, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31020397

ABSTRACT

Pisum sativum symbiotic mutant SGEFix--2 carries the sym33-3 allele of the gene Sym33, encoding transcription factor PsCYCLOPS/PsIPD3. Previously, strong host cell defence reactions were identified in nodules of this mutant. In the present study, new manifestations of defence reactions were revealed in 28-day-old white nodules in which bacterial release had occurred. These nodules were investigated using histochemical staining of pectin and suberin and by immunogold localisation of three components of pectin: highly methyl-esterified homogalacturonan (HG) recognised by monoclonal antibody JIM7, low methyl-esterified HG recognised by JIM5 and linear (1-4)-ß-D-galactan side-chain of rhamnogalacturonan I (RG I) recognised by LM5. In the mutant, but not in the wild-type, cell wall material was deposited around the vacuole in the uninfected cells, in cells containing infection threads and in the infected cells. The deposits around the vacuole were marked with JIM7 and LM5 antibodies but not with JIM5, suggesting that they contain newly formed cell wall material. Deposition was accompanied by suberin accumulation. This is the first report that deposition of cell wall material around the vacuole may be associated with the defence reaction in ineffective nodules. In addition, hypertrophic infection droplets labelled with JIM7 were identified. In the matrix of some infection threads, RG I recognised a pectic gel component. Callose deposits in the cell walls and in the walls of infection threads were occasionally observed. The observations suggest that an important function of transcriptional factor CYCLOPS/IPD3 is the suppression of defence reactions during establishment of the legume-rhizobial symbiosis.


Subject(s)
Cell Wall/metabolism , Pisum sativum/chemistry , Plant Proteins/genetics , Transcription Factor 3/metabolism , Alleles
17.
Protoplasma ; 256(4): 983-996, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30793221

ABSTRACT

Infection of host cells by nitrogen-fixing soil bacteria, known as rhizobia, involves the progressive remodelling of the plant-microbe interface. This process was examined by using monoclonal antibodies to study the subcellular localisation of pectins and arabinogalactan proteins (AGPs) in wild-type and ineffective nodules of Pisum sativum and Medicago truncatula. The highly methylesterified homogalacturonan (HG), detected by monoclonal antibody JIM7, showed a uniform localisation in the cell wall, regardless of the cell type in nodules of P. sativum and M. truncatula. Low methylesterified HG, recognised by JIM5, was detected mainly in the walls of infection threads in nodules of both species. The galactan side chain of rhamnogalacturonan I (RG-I), recognised by LM5, was present in the nodule meristem in both species and in the infection thread walls in P. sativum, but not in M. truncatula. The membrane-anchored AGP recognised by JIM1 was observed on the plasma membrane in nodules of P. sativum and M. truncatula. In P. sativum, the AGP epitope recognised by JIM1 was present on mature symbiosome membranes of wild-type nodules, but JIM1 labelling was absent from symbiosome membranes in the mutant Sprint-2Fix- (sym31) with undifferentiated bacteroids, suggesting a possible involvement of AGP in the maturation of symbiosomes. Thus, the common and species-specific traits of cell wall remodelling during nodule differentiation were demonstrated.


Subject(s)
Medicago truncatula/microbiology , Mucoproteins/metabolism , Pisum sativum/microbiology , Root Nodules, Plant/microbiology , Antibodies, Monoclonal , Cell Wall/metabolism , Epitopes , Medicago truncatula/genetics , Microscopy, Fluorescence , Mucoproteins/immunology , Mutation , Pisum sativum/genetics , Pectins/immunology , Pectins/metabolism , Plant Proteins/immunology , Plant Proteins/metabolism , Root Nodules, Plant/cytology , Root Nodules, Plant/metabolism , Symbiosis
18.
Protoplasma ; 255(5): 1443-1459, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29616347

ABSTRACT

Plant symbiotic mutants are useful tool to uncover the molecular-genetic mechanisms of nodule senescence. The pea (Pisum sativum L.) mutants SGEFix--1 (sym40), SGEFix--3 (sym26), and SGEFix--7 (sym27) display an early nodule senescence phenotype, whereas the mutant SGEFix--2 (sym33) does not show premature degradation of symbiotic structures, but its nodules show an enhanced immune response. The nodules of these mutants were compared with each other and with those of the wild-type SGE line using seven marker genes that are known to be activated during nodule senescence. In wild-type SGE nodules, transcript levels of all of the senescence-associated genes were highest at 6 weeks after inoculation (WAI). The senescence-associated genes showed higher transcript abundance in mutant nodules than in wild-type nodules at 2 WAI and attained maximum levels in the mutant nodules at 4 WAI. Immunolocalization analyses showed that the ethylene precursor 1-aminocyclopropane-1-carboxylate accumulated earlier in the mutant nodules than in wild-type nodules. Together, these results showed that nodule senescence was activated in ineffective nodules blocked at different developmental stages in pea lines that harbor mutations in four symbiotic genes.


Subject(s)
Pisum sativum/metabolism , Pisum sativum/physiology , Root Nodules, Plant/metabolism , Root Nodules, Plant/physiology , Nitrogen Fixation/genetics , Nitrogen Fixation/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Symbiosis/genetics , Symbiosis/physiology
19.
Funct Plant Biol ; 45(2): 47-57, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32291020

ABSTRACT

The nitrogen-fixing nodule is a unique ecological niche for rhizobia, where microaerobic conditions support functioning of the main enzyme of nitrogen fixation, nitrogenase, which is highly sensitive to oxygen. To accommodate bacteria in a symbiotic nodule, the specialised infected cells increase in size owing to endoreduplication and are able to shelter thousands of bacteria. Bacteria are isolated from the cytoplasm of the plant cell by a membrane-bound organelle-like structure termed the symbiosome. It is enclosed by a symbiosome membrane, mainly of plant origin but with some inclusion of bacterial proteins. Within the symbiosome, bacterial cells differentiate into bacteroids a form that is specialised for nitrogen fixation. In this review, we briefly summarise recent advances in studies of differentiation both of symbiosomes and of the infected cells that accommodate them. We will consider the role of CCS52A, DNA topoisomerase VI, tubulin cytoskeleton rearrangements in differentiation of infected cells, the fate of the vacuole, and the distribution of symbiosomes in the infected cells. We will also consider differentiation of symbiosomes, paying attention to the role of NCR peptides, vesicular transport to symbiosomes, and mutant analysis of symbiosome development in model and crop legumes. Finally, we conclude that mechanisms involved in redistribution organelles, including the symbiosomes, clearly merit much more attention.

20.
Protoplasma ; 252(6): 1505-17, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25743038

ABSTRACT

Rhizobia are able to establish a beneficial interaction with legumes by forming a new organ, called the symbiotic root nodule, which is a unique ecological niche for rhizobial nitrogen fixation. Rhizobial infection has many similarities with pathogenic infection and induction of defence responses accompanies both interactions, but defence responses are induced to a lesser extent during rhizobial infection. However, strong defence responses may result from incompatible interactions between legumes and rhizobia due to a mutation in either macro- or microsymbiont. The aim of this research was to analyse different plant defence reactions in response to Rhizobium infection for several pea (Pisum sativum) mutants that result in ineffective symbiosis. Pea mutants were examined by histochemical and immunocytochemical analyses, light, fluorescence and transmission electron microscopy and quantitative real-time PCR gene expression analysis. It was observed that mutations in pea symbiotic genes sym33 (PsIPD3/PsCYCLOPS encoding a transcriptional factor) and sym40 (PsEFD encoding a putative negative regulator of the cytokinin response) led to suberin depositions in ineffective nodules, and in the sym42 there were callose depositions in infection thread (IT) and host cell walls. The increase in deposition of unesterified pectin in IT walls was observed for mutants in the sym33 and sym42; for mutant in the sym42, unesterified pectin was also found around degrading bacteroids. In mutants in the genes sym33 and sym40, an increase in the expression level of a gene encoding peroxidase was observed. In the genes sym40 and sym42, an increase in the expression levels of genes encoding a marker of hypersensitive reaction and PR10 protein was demonstrated. Thus, a range of plant defence responses like suberisation, callose and unesterified pectin deposition as well as activation of defence genes can be triggered by different pea single mutations that cause perception of an otherwise beneficial strain of Rhizobium as a pathogen.


Subject(s)
Gene Expression Regulation, Plant , Mutation , Pisum sativum/microbiology , Plant Proteins/genetics , Plants, Genetically Modified/microbiology , Rhizobium leguminosarum/physiology , Root Nodules, Plant/microbiology , Symbiosis/genetics , Transcription Factors/genetics , Genotype , Glucans/metabolism , Immunohistochemistry , Lipids , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Nitrogen Fixation , Pisum sativum/genetics , Pisum sativum/metabolism , Pisum sativum/ultrastructure , Pectins/metabolism , Phenotype , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/ultrastructure , Real-Time Polymerase Chain Reaction , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Root Nodules, Plant/ultrastructure , Soil Microbiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...