Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36676891

ABSTRACT

The application of electrodialysis for tartrate stabilization and reagent-free acidity correction of wine and juices is attracting increasing interest. New aliphatic membranes CJMC-3 and CJMA-3 and aromatic membranes CSE and ASE were tested to determine their suitability for use in these electrodialysis processes and to evaluate the fouling of these membranes by wine components for a short (6-8 h) operating time. Using IR spectroscopy, optical indication and measurement of surface contact angles, the chemical composition of the studied membranes, as well as some details about their fouling by wine components, was clarified. The current-voltage charsacteristics, conductivity and water-splitting capacity of the membranes before and after electrodialysis were analyzed. We found that in the case of cation-exchange membranes, complexes of anthocyanins with metal ions penetrate into the bulk (CJMC-3) or are localized on the surface (CSE), depending on the degree of crosslinking of the polymer matrix. Adsorption of wine components by the surface of anion-exchange membranes CJMA-3 and ASE causes an increase in water splitting. Despite fouling under identical conditions of electrodialysis, membrane pair CJMC-3 and CJMA-3 provided 18 ± 1 tartrate recovery with 31 · 10-3 energy consumption, whereas CSE and ASE provided 20 ± 1% tartrate recovery with an energy consumption of 28 · 10-3 Wh, in addition to reducing the conductivity of wine by 20 ± 1%. The casting of aliphatic polyelectrolyte films on the surface of aromatic membranes reduces fouling with a relatively small increase in energy consumption and approximately the same degree of tartrate recovery compared to pristine CSE and ASE.

2.
Membranes (Basel) ; 12(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36557094

ABSTRACT

Electrodialysis (ED) is an attractive method of tartrate stabilization of wine due to its rapidity and reagentlessness. At the same time, fouling of ion-exchange membranes by the components of wine materials is still an unsolved problem. The effect of ethanol, polyphenols (mainly anthocyanins and proanthocyanidins) and saccharides (fructose) on the fouling of aliphatic ion-exchange membranes CJMA-6 and CJMC-5 (manufactured by Hefei Chemjoy Polymer Materials Co. Ltd., Hefei, China) was analyzed using model solutions. It was shown that the mechanism and consequences of fouling are different in the absence of an electric field and during electrodialysis. In particular, a layer of colloidal particles is deposited on the surface of the CJMA-6 anion-exchange membrane in underlimiting current modes. Its thickness increases with increasing current density, apparently due to the implementation of a trap mechanism involving tartaric acid anions, as well as protons, which are products of water splitting and "acid dissociation". A successful attempt was made to clean CJMA-6 in operando by pumping a water-alcohol solution of KCl through the desalination compartment and changing electric field direction. It has been established that such a cleaning process suppresses the subsequent biofouling of ion-exchange membranes. In addition, selective recovery of polyphenols with high antioxidant activity is possible.

3.
Int J Mol Sci ; 23(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35628589

ABSTRACT

It is known that ammonium has a higher permeability through anion exchange and bipolar membranes compared to K+ cation that has the same mobility in water. However, the mechanism of this high permeability is not clear enough. In this study, we develop a mathematical model based on the Nernst−Planck and Poisson's equations for the diffusion of ammonium chloride through an anion-exchange membrane; proton-exchange reactions between ammonium, water and ammonia are taken into account. It is assumed that ammonium, chloride and OH− ions can only pass through membrane hydrophilic pores, while ammonia can also dissolve in membrane matrix fragments not containing water and diffuse through these fragments. It is found that due to the Donnan exclusion of H+ ions as coions, the pH in the membrane internal solution increases when approaching the membrane side facing distilled water. Consequently, there is a change in the principal nitrogen-atom carrier in the membrane: in the part close to the side facing the feed NH4Cl solution (pH < 8.8), it is the NH4+ cation, and in the part close to distilled water, NH3 molecules. The concentration of NH4+ reaches almost zero at a point close to the middle of the membrane cross-section, which approximately halves the effective thickness of the diffusion layer for the transport of this ion. When NH3 takes over the nitrogen transport, it only needs to pass through the other half of the membrane. Leaving the membrane, it captures an H+ ion from water, and the released OH− moves towards the membrane side facing the feed solution to meet the NH4+ ions. The comparison of the simulation with experiment shows a satisfactory agreement.


Subject(s)
Ammonia , Ammonium Compounds , Ammonium Chloride , Anions , Chlorides , Nitrogen , Permeability , Water
4.
Membranes (Basel) ; 12(5)2022 May 04.
Article in English | MEDLINE | ID: mdl-35629823

ABSTRACT

The review describes the place of membrane methods in solving the problem of the recovery and re-use of biogenic elements (nutrients), primarily trivalent nitrogen NIII and pentavalent phosphorus PV, to provide the sustainable development of mankind. Methods for the recovery of NH4+ - NH3 and phosphates from natural sources and waste products of humans and animals, as well as industrial streams, are classified. Particular attention is paid to the possibilities of using membrane processes for the transition to a circular economy in the field of nutrients. The possibilities of different methods, already developed or under development, are evaluated, primarily those that use ion-exchange membranes. Electromembrane methods take a special place including capacitive deionization and electrodialysis applied for recovery, separation, concentration, and reagent-free pH shift of solutions. This review is distinguished by the fact that it summarizes not only the successes, but also the "bottlenecks" of ion-exchange membrane-based processes. Modern views on the mechanisms of NH4+ - NH3 and phosphate transport in ion-exchange membranes in the presence and in the absence of an electric field are discussed. The innovations to enhance the performance of electromembrane separation processes for phosphate and ammonium recovery are considered.

5.
Membranes (Basel) ; 12(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35207067

ABSTRACT

The creation of monovalent selective ion exchange membranes benefits the desalination of surface waters by removing interfering monovalent ions while preserving polyvalent ionic nutrients. Studies of a promising method of layer-by-layer adsorption of polymers for the creation of monovalent selective coatings note a significant effect of the number of formed layers and of the nature of the external layer on the properties of the resulting membranes. This article reports the changes in properties of layer-by-layer coated heterogeneous membranes occurring at increasing numbers of layers that are attributed to the supposed intermixing of polymers between the layers, namely dependence of limiting current densities determined from i-V curve, enhanced electroconvection that was attributed to the appearing electrical heterogeneity of the surface, and the decreasing monovalent selectivity in electrodialysis of mixed NaCl + CaCl2 solution (from 1.33 to about 1) between the samples with five and six to eight layers of polymers.

6.
Membranes (Basel) ; 13(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36676852

ABSTRACT

Layer-by-layer adsorption allows the creation of versatile functional coatings for ion exchange membranes, but the stability of the coating and resulting properties of modified membranes in their operation is a frequently asked question. This paper examines the changes in voltammetric curves of layer-by-layer coated cation exchange membranes and pH-metry of desalination chamber with a studied membrane and an auxiliary anion exchange membrane after short-term tests, including over-limiting current modes. The practical operation of the membranes did not affect the voltammetric curves, but enhanced the generation of H+ and OH- ions in a system with polyethylenimine modified membrane in Ca2+ containing solution. It is shown that a distinction between the voltammetric curves of the membranes modified and the different polyamines persists during the operation and that, in the case of polyethylenimine, there is an additional zone of growth of potential drop in voltammetric curves and stronger generation of H+ and OH- ions as indicated by pH-metry.

7.
Membranes (Basel) ; 11(2)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672481

ABSTRACT

Ion exchange membranes covered with layers of polyelectrolytes of alternating charges are characterized by very high monovalent selectivity. This allows the use of such membranes for electrodialytic fractionation of multicomponent solutions. However, the very existence of the boundary at which differently charged layers come in contact can hinder a membrane's effectiveness by limiting its ion permeability, raising levels of H+ and OH- ions (thus shifting the pH) and increasing the electrical resistance of the membrane, which leads to increased energy consumption. To test how these properties would be changed, we created cheap layer-by-layer-modified membranes based on the heterogeneous MK-40 membrane, on which we adsorbed layers of polyallylamine and sulfonated polystyrene. We created samples with 3, 4, and 5 layers of polyelectrolytes and characterized them. We showed that the application of layers did not decrease the efficiency of the membrane, since the electrical resistance of the modified samples, which increased after application of the first oppositely charged layer, declined with the application of the following layers and became comparable to that of the substrate, while their limiting current density was higher and the shift of pH of treated solution was low in magnitude and comparable with that of the substrate membrane.

SELECTION OF CITATIONS
SEARCH DETAIL
...