Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biomater Adv ; 161: 213904, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805763

ABSTRACT

Engineered calcium carbonate (CaCO3) particles are extensively used as drug delivery systems due to their availability, biological compatibility, biodegradability, and cost-effective production. The synthesis procedure of CaCO3 particles, however, suffers from poor reproducibility. Furthermore, reducing the size of CaCO3 particles to <100 nm requires the use of additives in the reaction, which increases the total reaction time. Here we propose on-chip synthesis and loading of nanoscaled CaCO3 particles using microfluidics. After the development and fabrication of a microfluidic device, we optimized the synthesis of CaCO3 NPs by varying different parameters such as flow rates in the microfluidic channels, concentration of reagents, and the reaction time. To prove the versatility of the used synthesis route, we performed single and double loading of CaCO3 NPs with various compounds (Doxorubicin, Cy5 or FITC conjugated with BSA, and DNA) using the same microfluidic device. Further, the on-chip loaded CaCO3 NPs were used as carriers to transfer compounds to model cells. We have developed a microfluidic synthesis method that opens up a new pathway for easy on-chip fabrication of functional nanoparticles for clinical use.


Subject(s)
Calcium Carbonate , Lab-On-A-Chip Devices , Nanoparticles , Calcium Carbonate/chemistry , Nanoparticles/chemistry , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Humans , Microfluidics/methods , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Drug Carriers/chemistry , Particle Size , DNA/chemistry , DNA/administration & dosage
2.
Molecules ; 29(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474543

ABSTRACT

Copper-organic compounds have gained momentum as potent antitumor drug candidates largely due to their ability to generate an oxidative burst upon the transition of Cu2+ to Cu1+ triggered by the exogenous-reducing agents. We have reported the differential potencies of a series of Cu(II)-organic complexes that produce reactive oxygen species (ROS) and cell death after incubation with N-acetylcysteine (NAC). To get insight into the structural prerequisites for optimization of the organic ligands, we herein investigated the electrochemical properties and the cytotoxicity of Cu(II) complexes with pyridylmethylenethiohydantoins, pyridylbenzothiazole, pyridylbenzimidazole, thiosemicarbazones and porphyrins. We demonstrate that the ability of the complexes to kill cells in combination with NAC is determined by the potential of the Cu+2 → Cu+1 redox transition rather than by the spatial structure of the organic ligand. For cell sensitization to the copper-organic complex, the electrochemical potential of the metal reduction should be lower than the oxidation potential of the reducing agent. Generally, the structural optimization of copper-organic complexes for combinations with the reducing agents should include uncharged organic ligands that carry hard electronegative inorganic moieties.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Copper/chemistry , Reducing Agents , Antineoplastic Agents/chemistry , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Coordination Complexes/chemistry , Ligands
3.
PLoS One ; 18(12): e0295944, 2023.
Article in English | MEDLINE | ID: mdl-38127999

ABSTRACT

The p53 protein is crucial for regulating cell survival and apoptosis in response to DNA damage. However, its influence on therapy effectiveness is controversial: when DNA damage is high p53 directs cells toward apoptosis, while under moderate genotoxic stress it saves the cells from death and promote DNA repair. Furthermore, these processes are influenced by the metabolism of transition metals, particularly copper since they serve as cofactors for critical enzymes. The metallochaperone Atox1 is under intensive study in this context because it serves as transcription factor allegedly mediating described effects of copper. Investigating the interaction between p53 and Atox1 could provide insights into tumor cell survival and potential therapeutic applications in oncology. This study explores the relationship between p53 and Atox1 in HCT116 and A549 cell lines with wild type and knockout TP53. The study found an inverse correlation between Atox1 and p53 at the transcriptional and translational levels in response to genotoxic stress. Atox1 expression decreased with increased p53 activity, while cells with inactive p53 had significantly higher levels of Atox1. Suppression of both genes increased apoptosis, while suppression of the ATOX1 gene prevented apoptosis even under the treatment with chemotherapeutic drugs. The findings suggest that Atox1 may act as one of key elements in promotion of cell cycle under DNA-damaging conditions, while p53 works as an antagonist by inhibiting Atox1. Understanding of this relationship could help identify potential targets in cell signaling pathways to enhance the effectiveness of combined antitumor therapy, especially in tumors with mutant or inactive p53.


Subject(s)
Copper , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Copper/metabolism , Copper Transport Proteins , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , DNA Damage
4.
Viruses ; 15(6)2023 05 31.
Article in English | MEDLINE | ID: mdl-37376593

ABSTRACT

Hyperactivation of the immune system remains a dramatic, life-threatening complication of viral and bacterial infections, particularly during pneumonia. Therapeutic approaches to counteract local and systemic outbreaks of cytokine storm and to prevent tissue damage remain limited. Cyclin-dependent kinases 8 and 19 (CDK8/19) potentiate transcriptional responses to the altered microenvironment, but CDK8/19 potential in immunoregulation is not fully understood. In the present study, we investigated how a selective CDK8/19 inhibitor, Senexin B, impacts the immunogenic profiles of monocytic cells stimulated using influenza virus H1N1 or bacterial lipopolysaccharides. Senexin B was able to prevent the induction of gene expression of proinflammatory cytokines in THP1 and U937 cell lines and in human peripheral blood-derived mononuclear cells. Moreover, Senexin B substantially reduced functional manifestations of inflammation, including clustering and chemokine-dependent migration of THP1 monocytes and human pulmonary fibroblasts (HPF).


Subject(s)
Influenza A Virus, H1N1 Subtype , Monocytes , Humans , U937 Cells , Influenza A Virus, H1N1 Subtype/metabolism , Cytokines/metabolism , Leukocytes, Mononuclear/metabolism
5.
J Mater Chem B ; 11(5): 1068-1078, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36625200

ABSTRACT

With the increase in non-communicable diseases, cancer is becoming one of the most lethal ailments of the coming decades. Significant progress has been made in the development of NPs that combine diagnostic and therapeutic properties in a single system. Multimodal NPs that sequentially perform MRI diagnostics with increased contrast and then act as synergistic agents for magnetic hyperthermia and radiotherapy can be considered as next-generation anticancer drugs. Thus, we propose a systematic study of composite theranostic ZnFe2O4@MnFe2O4 NPs for the first time. Two types of magnetic NPs with MnFe2O4 shell thicknesses of 0.5 (ZM0.5) and 1.7 nm (ZM3) were prepared via hydrothermal synthesis. Tuning the shell thickness was shown to influence the NP r2 and r1 relaxivities and allow T1-T2 dual-mode contrast agents to be obtained. A radiotherapy study demonstrated a significant dose factor enhancement (about 40%) for both NP types. The specific absorption rate of ZM3 in a 100 Oe alternating magnetic field with a frequency of 75 kHz was found to be 8 W g-1, which results in heating up to 42 °C within a few seconds. This work presents high-performance multifunctional NPs capable of combining different diagnostic and therapeutic methods for a full course of treatment using only one type of NP.


Subject(s)
Antineoplastic Agents , Hyperthermia, Induced , Nanoparticles , Neoplasms , Humans , Hyperthermia, Induced/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy , Hyperthermia , Magnetic Resonance Imaging/methods , Nanoparticles/therapeutic use
6.
Molecules ; 27(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36296659

ABSTRACT

Treatment of drug-resistant forms of cancer requires consideration of their hallmark features, such as abnormal cell death mechanisms or mutations in drug-responding molecular pathways. Malignant cells differ from their normal counterparts in numerous aspects, including copper metabolism. Intracellular copper levels are elevated in various cancer types, and this phenomenon could be employed for the development of novel oncotherapeutic approaches. Copper maintains the cell oxidation levels, regulates the protein activity and metabolism, and is involved in inflammation. Various copper-based compounds, such as nanoparticles or metal-based organic complexes, show specific activity against cancer cells according to preclinical studies. Herein, we summarize the major principles of copper metabolism in cancer cells and its potential in cancer theranostics.


Subject(s)
Coordination Complexes , Nanoparticles , Neoplasms , Humans , Copper/metabolism , Precision Medicine , Neoplasms/drug therapy , Coordination Complexes/therapeutic use
7.
J Colloid Interface Sci ; 615: 206-214, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35131501

ABSTRACT

The development of universal methods to synthesize materials with different structures is always in the researchers' focus. Despite the fact that various structures based on magnetite have already been obtained, synthetic approaches that allow to synthesize materials with a wide range of texture and functional properties are still very poorly presented. In this work, we demonstrate that a stable magnetite hydrosol can be easily converted into monolithic structures of xero-, cryo- and aerogel by careful varying concentrations and drying conditions. We have also theoretically explained the observed effects by studying the percolation threshold at the sol-gel transition by means of controlled assembly of magnetite nanoparticles. At the calculated percolation point three types of materials different in porous organization were obtained. Due to the high biocompatibility of magnetite nanoparticles, the materials obtained were evaluated for cytotoxicity on HeLa cells line. All synthesized magnetite structures show excellent biocompatibility and minor cytotoxic effects at concentrations up to 1 µg mL-1. Considering that the porosity of materials can influence the manifestation of the hemostatic effect, whole-blood clotting study revealed the hemostatic potential of magnetite aerogel. That fact can be explained by presence spongy structure of the aerogel that allowed blood to be rapidly absorbed through full contact.


Subject(s)
Ferrosoferric Oxide , Magnetite Nanoparticles , Gels/chemistry , HeLa Cells , Humans , Magnetite Nanoparticles/chemistry , Porosity
8.
Int J Mol Sci ; 22(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681725

ABSTRACT

Copper-containing agents are promising antitumor pharmaceuticals due to the ability of the metal ion to react with biomolecules. In the current study, we demonstrate that inorganic Cu2+ in the form of oxide nanoparticles (NPs) or salts, as well as Cu ions in the context of organic complexes (oxidation states +1, +1.5 and +2), acquire significant cytotoxic potency (2-3 orders of magnitude determined by IC50 values) in combinations with N-acetylcysteine (NAC), cysteine, or ascorbate. In contrast, other divalent cations (Zn, Fe, Mo, and Co) evoked no cytotoxicity with these combinations. CuO NPs (0.1-1 µg/mL) together with 1 mM NAC triggered the formation of reactive oxygen species (ROS) within 2-6 h concomitantly with perturbation of the plasma membrane and caspase-independent cell death. Furthermore, NAC potently sensitized HCT116 colon carcinoma cells to Cu-organic complexes in which the metal ion coordinated with 5-(2-pyridylmethylene)-2-methylthio-imidazol-4-one or was present in the coordination sphere of the porphyrin macrocycle. The sensitization effect was detectable in a panel of mammalian tumor cell lines including the sublines with the determinants of chemotherapeutic drug resistance. The components of the combination were non-toxic if added separately. Electrochemical studies revealed that Cu cations underwent a stepwise reduction in the presence of NAC or ascorbate. This mechanism explains differential efficacy of individual Cu-organic compounds in cell sensitization depending on the availability of Cu ions for reduction. In the presence of oxygen, Cu+1 complexes can generate a superoxide anion in a Fenton-like reaction Cu+1L + O2 → O2-. + Cu+2L, where L is the organic ligand. Studies on artificial lipid membranes showed that NAC interacted with negatively charged phospholipids, an effect that can facilitate the penetration of CuO NPs across the membranes. Thus, electrochemical modification of Cu ions and subsequent ROS generation, as well as direct interaction with membranes, represent the mechanisms of irreversible membrane damage and cell death in response to metal reduction in inorganic and organic Cu-containing compounds.


Subject(s)
Apoptosis/drug effects , Coordination Complexes/pharmacology , Copper/chemistry , Metal Nanoparticles/toxicity , Oxidative Stress/drug effects , Acetylcysteine/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Humans , Liposomes/chemistry , Liposomes/metabolism , Membrane Potential, Mitochondrial/drug effects , Metal Nanoparticles/chemistry , Oxidation-Reduction , Superoxides/metabolism
9.
ACS Biomater Sci Eng ; 7(12): 5633-5641, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34714630

ABSTRACT

Recently, the combined therapy has become one of the main approaches in cancer treatment. Combining different approaches may provide a significant outcome by triggering several death mechanisms or causing increased damage of tumor cells without hurting healthy ones. The supramolecular nanoplatform based on a high-Z metal reported here is a suitable system for the targeted delivery of chemotherapeutic compounds, imaging, and an enhanced radiotherapy outcome. HfO2 nanoparticles coated with oleic acid and a monomethoxypoly(ethylene glycol)-poly(ε-caprolactone) copolymer shell (nanoplatform) are able to accumulate inside cancer cells and release doxorubicin (DOX) under specific conditions. Neither uncoated nor coated nanoparticles show any cytotoxicity in vitro. DOX loaded onto a nanoplatform demonstrates a lower IC50 value than pure DOX. X-ray irradiation of cancer cells loaded with a nanoplatform shows a higher death rate than that for cells without nanoparticles. These results provide an important foundation for the development of complex nanoscale systems for combined cancer treatment.


Subject(s)
Nanoparticles , Polyethylene Glycols , Chemoradiotherapy , Doxorubicin , Hafnium , Oxides
10.
Nanomaterials (Basel) ; 10(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-32284505

ABSTRACT

For the widespread application of nanotechnology in biomedicine, it is necessary to obtain information about their safety. A critical problem is presented by the host immune responses to nanomaterials. It is assumed that the innate immune system plays a crucial role in the interaction of nanomaterials with the host organism. However, there are only fragmented data on the activation of innate immune system factors, such as toll-like receptors (TLRs), by some nanoparticles (NPs). In this study, we investigated TLRs' activation by clinically relevant and promising NPs, such as Fe3O4, TiO2, ZnO, CuO, Ag2O, and AlOOH. Cytotoxicity and effects on innate immunity factors were studied in THP-1(Tohoku Hospital Pediatrics-1) cell culture. NPs caused an increase of TLR-4 and -6 expression, which was comparable with the LPS-induced level. This suggests that the studied NPs can stimulate the innate immune system response inside the host. The data obtained should be taken into account in future research and to create safe-by-design biomedical nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...