Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Clin Med ; 13(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673554

ABSTRACT

Background: The increase in the global population of hemodialysis patients is linked to aging demographics and the prevalence of conditions such as arterial hypertension and diabetes mellitus. While previous research in hemodialysis has mainly focused on mortality predictions, there is a gap in studies targeting short-term hospitalization predictions using detailed, monthly blood test data. Methods: This study employs advanced data preprocessing and machine learning techniques to predict hospitalizations within a 30-day period among hemodialysis patients. Initial steps include employing K-Nearest Neighbor (KNN) imputation to address missing data and using the Synthesized Minority Oversampling Technique (SMOTE) to ensure data balance. The study then applies a Support Vector Machine (SVM) algorithm for the predictive analysis, with an additional enhancement through ensemble learning techniques, in order to improve prediction accuracy. Results: The application of SVM in predicting hospitalizations within a 30-day period among hemodialysis patients resulted in an impressive accuracy rate of 93%. This accuracy rate further improved to 96% upon incorporating ensemble learning methods, demonstrating the efficacy of the chosen machine learning approach in this context. Conclusions: This study highlights the potential of utilizing machine learning to predict hospital readmissions within a 30-day period among hemodialysis patients based on monthly blood test data. It represents a significant leap towards precision medicine and personalized healthcare for this patient group, suggesting a paradigm shift in patient care through the proactive identification of hospitalization risks.

2.
Vaccines (Basel) ; 11(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37896979

ABSTRACT

Albizia julibrissin saponin active fraction (AJSAF), is a prospective adjuvant with dual Th1/Th2 and Tc1/Tc2 potentiating activity. Its adjuvant activity has previously been proven to be strictly dependent on its spatial co-localization with antigens, highlighting the role of local innate immunity in its mechanisms. However, its potential targets and pathways remain unclear. Here, its intracellular molecular mechanisms of innate immune response were explored using mouse C2C12 myoblast by integrative analysis of the in vivo and in vitro transcriptome in combination with experimental validations. AJSAF elicited a temporary cytotoxicity and inflammation towards C2C12 cells. Gene set enrichment analysis demonstrated that AJSAF regulated similar cell death- and inflammatory response-related genes in vitro and in vivo through activating second messenger-MAPK-CREB pathways. AJSAF markedly enhanced the Ca2+, cAMP, and reactive oxygen species levels and accelerated MAPK and CREB phosphorylation in C2C12 cells. Furthermore, Ca2+ chelator, CREB inhibitor, and MAPK inhibitors dramatically blocked the up-regulation of IL-6, CXCL1, and COX2 in AJSAF-treated C2C12 cells. Collectively, these results demonstrated that AJSAF induced innate immunity via Ca2+-MAPK-CREB pathways. This study is beneficial for insights into the molecular mechanisms of saponin adjuvants.

3.
Int J Mol Sci ; 24(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37834468

ABSTRACT

3ß-hydroxy-12-oleanen-27-oic acid (ATA), a cytotoxic oleanane triterpenoid with C14-COOH isolated from the rhizome of Astilbe chinensis, has been previously proven to possess antitumor activity and may be a promising antitumor agent. However, its molecular mechanisms of antitumor action were still unclear. This study explored the underlying mechanisms of cytotoxicity and potential target of ATA against human colorectal cancer HCT116 cells via integrative analysis of transcriptomics and network pharmacology in combination with in vitro and in vivo experimental validations. ATA significantly inhibited the proliferation of HCT116 cells in a concentration- and time-dependent manner and induced the cell cycle arrest at the G0/G1 phase, apoptosis, autophagy, and ferroptosis. Transcriptomic analysis manifested that ATA regulated mRNA expression of the genes related to cell proliferation, cell cycle, and cell death in HCT116 cells. The integrated analysis of transcriptomics, network pharmacology, and molecular docking revealed that ATA exerted cytotoxic activity via interactions with FDFT1, PPARA, and PPARG. Furthermore, FDFT1 was verified to be an upstream key target mediating the antiproliferative effect of ATA against HCT116 cells. Of note, ATA remarkably suppressed the growth of HCT116 xenografts in nude mice and displayed an apparent attenuation of FDFT1 in tumor tissues accompanied by the alteration of the biomarkers of autophagy, cell cycle, apoptosis, and ferroptosis. These results demonstrate that ATA exerted in vitro and in vivo antiproliferative effects against HCT116 cells through inducing cell apoptosis, autophagy, and ferroptosis via targeting FDFT1.


Subject(s)
Antineoplastic Agents , Carcinoma , Colonic Neoplasms , Triterpenes , Animals , Mice , Humans , HCT116 Cells , Mice, Nude , Molecular Docking Simulation , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Triterpenes/therapeutic use , Apoptosis , Cell Proliferation
4.
Int J Biol Macromol ; 252: 126440, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37611690

ABSTRACT

Actinidia eriantha polysaccharide (AEPS) is a potent adjuvant with dual Th1 and Th2 potentiating activity. linc-AAM has been previously proved to facilitate the expression of immune response genes (IRGs) in AEPS-activated RAW264.7 macrophages. However, its role in mediating adjuvant activity of AEPS remains to be elucidated. In this study, bone marrow-derived macrophages (BMDMs) from wide-type (WT) and linc-AAM knockout C57BL/6J mice treated with AEPS were subjected to transcriptome sequencing and bioinformatic analysis. linc-AAM deficiency inhibited M1 and M2 immune responses in BMDMs induced by AEPS. In mechanisms, AEPS facilitated the expression of IRGs and activated BMDMs through NF-κB-linc-AAM-JAK/STAT axis. Furthermore, linc-AAM knockout inhibited cytokine and chemokine production, immune cell recruitment as well as immune cell migration to draining lymph nodes at peritoneal cavity in mice induced by AEPS. More importantly, linc-AAM deletion reduced the adjuvant activity of APES on antigen-specific cellular and humoral immune responses to ovalbumin in mice. This study has for the first time demonstrated the role of lncRNAs in regulating the adjuvant activity of polysaccharides and its mechanisms. These findings expanded current knowledge on the mechanism of action of adjuvant and provide a new target for the design and development of vaccine adjuvants.


Subject(s)
Actinidia , Animals , Mice , Actinidia/genetics , Mice, Inbred C57BL , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/metabolism , Macrophages , Adjuvants, Pharmaceutic , Polysaccharides/pharmacology , Polysaccharides/metabolism
5.
Int J Biol Macromol ; 248: 125878, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37467829

ABSTRACT

Two polysaccharides from Crocus sativus petals (PCSPs), PCSPA and PCSPB have been previously reported to possess the immunopotentiation activity and improve innate immunity in mice. In this study, PCSPB was evaluated for the anti-tumor activity and explored its immunological mechanisms based on tumor microenvironment (TME) using S180 sarcoma-bearing mice. Although PCSPB showed the lower toxicity to a series of tumor cells, it significantly and dose-dependently suppressed the growth of S180 sarcomas transplanted in mice. HE staining, immunohistochemical analysis, and TUNEL assay revealed that PCSPB significantly induced tumor cell necrosis, apoptosis, and vessel disruption in sarcoma tissues. Meanwhile, PCSPB markedly decreased the levels of inflammatory factors TGF-ß, IFN-γ, IL-10 and TNF-α and down-regulated the mRNA expression levels of TGF-ß and TNF-α in tumor tissues. Flow cytometric analysis showed that PCSPB significantly increased the proportion of CD8+ T cells and NK cells, but decreased that of regulatory T cells (Tregs), total myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) in sarcoma tissues. Furthermore, immunofluorescence assay demonstrated that PCSPB noteworthily reprogrammed TAMs from a tumorigenic M2 towards an antitumorigenic M1 phenotype in S180 tissues. These findings demonstrated that PCSPB might exert the anti-tumor activity by reconstructing TME and could act as an anti-tumor candidate with low toxicity.


Subject(s)
Crocus , Sarcoma , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Microenvironment , Cell Line, Tumor , Sarcoma/pathology , Immunity, Innate , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/pharmacology , Polysaccharides/pharmacology
6.
Antioxidants (Basel) ; 13(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38275624

ABSTRACT

The miniature pig is a suitable animal model for investigating human cardiovascular diseases. Nevertheless, the alterations in lipid metabolism within atherosclerotic plaques of miniature pigs, along with the underlying mechanisms, remain to be comprehensively elucidated. In this study, we aim to examine the alterations in lipid composition and associated pathways in the abdominal aorta of atherosclerotic pigs induced by a high-fat, high-cholesterol, and high-fructose (HFCF) diet using lipidomics and RNA-Seq methods. The results showed that the content and composition of aortic lipid species, particularly ceramide, hexosyl ceramide, lysophosphatidylcholine, and triglyceride, were significantly altered in HFCF-fed pigs. Meanwhile, the genes governing sphingolipid metabolism, iron ion homeostasis, apoptosis, and the inflammatory response were significantly regulated by the HFCF diet. Furthermore, C16 ceramide could promote iron deposition in RAW264.7 cells, leading to increased intracellular reactive oxygen species (ROS) production, apoptosis, and activation of the toll-like receptor 4 (TLR4)/nuclear Factor-kappa B (NF-қB) inflammatory pathway, which could be mitigated by deferoxamine. Our study demonstrated that dysregulated ceramide metabolism could increase ROS production, apoptosis, and inflammatory pathway activation in macrophages by inducing iron overload, thus playing a vital role in the pathogenesis of atherosclerosis. This discovery could potentially provide a new target for pharmacological therapy of cardiovascular diseases such as atherosclerosis.

7.
Chin J Nat Med ; 20(8): 589-600, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36031231

ABSTRACT

Recent studies have showed that thrombosis is closely related to leucocytes involved in immunity. Interfering with the binding of leukocyte integrin Mac-1 and platelet GPIbα can inhibit thrombosis without affecting physiological coagulation. Mac-1-GPIbα is proposed as a potential safety target for antithrombotic agents. Guanxinning tablet (GXNT) is an oral Chinese patent medicine used for the treatment of angina pectoris, which contains phenolic acid active ingredients, such as salvianolic acids, ferulic acid, chlorogenic acid, caffeic acid, rosmarinic acid, tanshinol, and protocatechualdehyde. Our previous studies demonstrated that GXN exhibited significant antithrombotic effects, and clinical studies suggested that it did not increase bleeding risk. In addition, GXN exerted a significantly regulatory effect on immune inflammation. In the current study, we intended to evaluate the effects of GXN on bleeding events and explore the safety antithrombotic mechanism of GXN based on leukocyte-platelet interaction. First, we established a gastric ulcer model induced by acetic acid in rats and found that GXN not only did not increase the degree of gastrointestinal bleeding when gastric ulcer occurred, but also had a certain promoting effect on the healing of gastric ulcer. Second, in vitroexperiments showed that after pretreatment with GXN and activation by phorbol 12-myristate-13-acetate (PMA), the adhesion and aggregation of leukocytes with human platelets were reduced. It was also found that GXN reduced the expression and activation of Mac-1 in leucocytes, and inhibited platelet activation due to leukocyte engagement via Mac-1. Overall, the results suggest that GXN may be a safe antithrombotic agent, and its low bleeding risk mechanism is probably related to inhibited leukocyte-platelet aggregation and its interaction target Mac-1-GPIbα.


Subject(s)
Stomach Ulcer , Thrombosis , Animals , Fibrinolytic Agents , Humans , Integrins , Leukocytes , Macrophage-1 Antigen , Rats , Tablets
8.
J Ethnopharmacol ; 292: 115213, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35331878

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Smilax glabra Roxb., the dry rhizome of Sarsaparilla, which is also known as Tu fuling (TFL) in China, is a well-known traditional CHINESE medicine that is widely used for detoxication, relieving dampness and as a diuretic. We have previously shown that the extracted TFL flavonoids (designated TFLF) possess anti-cardiac hypertrophy effects in vitro. However, the anti-cardiac hypertrophy effects of TFLF in vivo and the underlying mechanisms remain to be elucidated. AIM OF THE STUDY: To reveal the underlying therapeutic mechanism of TFLF on cardiac hypertrophy by using transverse aortic constriction (TAC) model and cellular assays in vitro. MATERIAL & METHODS: Cardiac hypertrophy was replicated by TAC surgery in rats or by isoprenaline treatment of rat H9C2 myocardial cells in vitro. Cardiac structure and function were evaluated by echocardiographic and hemodynamic examinations in vivo and histological analysis of tissues ex vivo. Biochemical kits and quantitative PCR were used to analyze markers of cardiac hypertrophy. Expression and phosphorylation of key proteins in the Raf/MEK/ERK pathway were quantified by Western blotting. We further confirmed our findings in H9C2 rat cardiomyocytes treated with isoprenaline and the ERK inhibitor in vitro. RESULTS: TFLF attenuated cardiac hypertrophy and fibrosis and improved cardiac dysfunction in TAC rats. TFLF treatment induced a strong reduction in serum NT-proBNP levels. Cardiac hypertrophy marker gene (ANP, BNP and ß-MHC) expression and the phosphorylation levels of c-Raf and ERK1/2 were decreased by TFLF treatment. TFLF also protected H9C2 cells from isoprenaline-induced hypertrophy in vitro via a similar molecular mechanism as that observed in the rat heart. Moreover, pretreatment with TRLF and the ERK inhibitor further inhibited the mRNA overexpression of hypertrophic genes in vitro. CONCLUSIONS: TFLFs may protect against pathological cardiac hypertrophy via negative regulation of the Raf/MEK/ERK pathway. Thus, TFLFs are implicated as a potential pharmacological agent for treating cardiac hypertrophy in clinical practice.


Subject(s)
Smilax , Animals , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/prevention & control , Flavonoids/pharmacology , Flavonoids/therapeutic use , Isoproterenol/pharmacology , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases , Myocytes, Cardiac , Rats , Smilax/chemistry
9.
J Nanobiotechnology ; 18(1): 114, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32811502

ABSTRACT

Diacid metabolite as the stable form of norcantharidin (DM-NCTD) derived from Chinese blister beetle (Mylabris spp.). The previous studies reported that DM-NCTD could enhance ABT-737-triggered cell viability inhibition and apoptosis in hepatocellular carcinoma (HCC) cell lines. To translate this synergistic therapy into in vivo anticancer treatment, a folate receptor-targeted lipid bilayer-supported chlorodimethyloctadecylsilane-modified mesoporous silica nanoparticle (FA-LB-CHMSN) with DM-NCTD loaded in CHMSN and ABT-737 in lipid bilayer was prepared, which could promote the cancer cell uptake of the drugs through folate receptor-mediated endocytosis. The structure and the properties of the nanoparticle were evaluated. FA-LB-CHMSN with DM-NCTD/ABT-737 loaded induced apparent tumor cell apoptosis and showed remarkably tumor inhibition in H22 tumor-bearing mice model, with significant cellular apoptosis in the tumor and no obvious toxicity to the tissues. We expect that this nanoparticle could be of interest in both biomaterial investigations for HCC treatment and the combination of chemotherapeutic drugs for synergistic therapies.


Subject(s)
Antineoplastic Agents , Biphenyl Compounds , Bridged Bicyclo Compounds, Heterocyclic , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Nitrophenols , Sulfonamides , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacokinetics , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/pharmacokinetics , Carcinoma, Hepatocellular/pathology , Folic Acid/chemistry , Lipid Bilayers/chemistry , Liver/chemistry , Liver/pathology , Liver Neoplasms/pathology , Mice , Nanoparticles/chemistry , Nitrophenols/chemistry , Nitrophenols/pharmacokinetics , Piperazines/chemistry , Piperazines/pharmacokinetics , Silicon Dioxide/chemistry , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics
10.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(1): 33-38, 2020 Jan 28.
Article in Chinese | MEDLINE | ID: mdl-32476371

ABSTRACT

OBJECTIVE: To investigate the mRNA, protein expression levels and the phosphorylation levels of key factors in rapidly accelerated fibrosarcoma/mitogen-activated protein kinase kinase/extracellular regulated protein kinases (Raf/MEK/ERK) pathway, and to clarify the regulatory function of Raf/MEK/ERK pathway in myocardial hypertrophy. METHODS: Twenty SD rats were divided into sham-operated group and model group. The myocardial hypertrophy model was established by transverse aortic constriction (TAC). At 12 weeks after TAC, blood samples were collected from the submandibular vein, and the serum was separated to detect the content of N terminal pro B type natriuretic peptide (NT-proBNP). After that, the rats were subjected to echocardiography and hemodynamic measurement. Then the pathological changes of myocardial tissue were observed. And the levels of mRNA, protein expression and the phosphorylation of key factors in Raf/MEK/ERK pathway were detected in myocardial tissue. RESULTS: Compared with sham-operated group, left ventricular end-diastolic interventricular septal thickness (IVSd), left ventricular end-systolic interventricular septal thickness (IVSs), left ventricular end-diastolic posterior wall thickness (LVPWd) and left vebtricular end-systolic posterior wall thickness (LVPWs) in TAC model group were increased significantly (P<0.05,P<0.01), left ventricular end-systolic diameter (LVIDs) was decreased significantly (P<0.01), LV Mass and LW(LV Mass/Weight)were increased significantly (P<0.05, P<0.01). The levels of heart rate (HR), left ventricular pressure maximal rate of rise (+dp/dtmax), left ventricular pressure maximal rate of fall (-dp/dtmax) were decreased significantly (P<0.01). The serum level of NT-proBNP in TAC rat was increased significantly (P<0.01). The myocardial cells in TAC model group were arranged disorderly, myocardial cell hypertrophy, cytoplasm were increased significantly, and inflammatory cells infiltrated. A large amount of collagen fibers were deposited and large area of myocardial cells were stained blue in TAC rat. The expression levels of phospho-c-Raf (Ser259) and phospho-c-Raf (Ser338) in myocardial tissue were significantly increased (P<0.01), meanwhile the expression levels of phospho- MEK1/2(Ser217/Ser221) and phospho-ERK1/2 (Thr202/Tyr204) were also significantly increased (P<0.01). CONCLUSION: The regulatory role of Raf / MEK / ERK pathway in cardiac hypertrophy may be through the activation of phosphorylation of c-raf, MEK1, Mek2, ERK1 and ERK2 at specific sites.


Subject(s)
Aorta/pathology , Cardiomegaly , MAP Kinase Signaling System , Animals , Constriction , Myocardium/pathology , Rats , Rats, Sprague-Dawley
11.
Biomed Pharmacother ; 125: 110011, 2020 May.
Article in English | MEDLINE | ID: mdl-32106371

ABSTRACT

Smilax glabra Roxb. (SG) is a well-known traditional Chinese medicine that has been extensively used as both food and folk medicine in many countries. Although many beneficial health effects of SG and its primary components have been reported, their action on adipocyte function remains unknown. In the present study, we investigated the effects of the total flavonoids from Smilax glabra Roxb. (SGF) on lipid accumulation in mouse 3T3-L1 adipocytes and further elucidated its potential mechanism using RNA-Seq transcriptome technique. Our results showed that SGF exposure significantly decreased the lipid droplet size and the levels of cellular free fatty acids, while triglyceride accumulation was not affected by SGF. Transcriptome analysis revealed that SGF induced the expression of genes involved in triglyceride storage, fatty acid ß-oxidation and mitochondrial biogenesis. Furthermore, we also observed an increased cellular ATP level and mitochondrial mass after SGF exposure, indicating that SGF enhanced mitochondrial function. The other relevant transcriptional changes appeared to be involved in AMPK/PGC-1α signaling, inflammatory response, as well as PI3K/AKT and calcium signaling pathways, which might contribute to the beneficial metabolic effects of SGF on adipocyte function. The results of Western blotting confirmed that SGF could increase the phosphorylation of AMPK while decrease the phosphorylation of AKT in adipocytes. Altogether, our results provided novel information about the molecular mechanism responsible for the effects of SGF on fat storage in adipocytes and highlights the potential metabolic benefits of SGF on human obesity and its related chronic diseases.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Flavonoids/pharmacology , Metabolic Networks and Pathways/drug effects , Plant Extracts/pharmacology , Signal Transduction/drug effects , Transcriptome , 3T3-L1 Cells , Adipogenesis/genetics , Animals , Calcium/metabolism , Cell Differentiation , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation/drug effects , Gene Ontology , Mice , Mitochondria/genetics , Mitochondria/metabolism , Molecular Sequence Annotation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Smilax/chemistry
12.
J Anim Physiol Anim Nutr (Berl) ; 104(2): 597-605, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31891214

ABSTRACT

In this study, we aimed to determine the effects of dietary supplementation with chitosan nanoparticles (CNP) on growth performance, immune status, gut microbiota and immune responses after lipopolysaccharide challenge in weaned pigs. A total of 144 piglets were assigned to four groups receiving different dietary treatments, including basal diets supplemented with 0, 100, 200 and 400 mg/kg CNP fed for 28 days. Each treatment group included six pens (six piglets per pen). The increase in supplemental CNP concentration improved the average daily gain (ADG) and decreased the feed and gain (F/G) and diarrhoea rate (p < .05). However, significant differences in the average daily feed intake (ADFI) among different CNP concentrations were not observed. CNP also increased plasma immunoglobulin (Ig)A and IgG, and C3 and C4 concentrations in piglets in a dose-dependent manner on day 28, whereas IgM concentration was not affected by CNP. A total of 24 piglets in the control diet and control diet with 400 mg/kg CNP supplementation groups were randomly selected for the experiment of immunological stress. Half of the pigs in each group (n = 6) were injected i.p. with Escherichia coli lipopolysaccharide (LPS) at a concentration of 100 µg/kg. The other pigs in each group were injected with sterile saline solution at the same volume. Plasma concentrations of cortisol, prostaglandin E2 (PEG2), interleukin (IL)-6, tumour necrosis factor (TNF)-α and IL-1ß dramatically increased after LPS challenge. However, CNP inhibited the increase in cortisol, PEG2, IL-6 and IL-1ß levels in plasma, whereas TNF-α level slightly increased. Moreover, the effects of CNP on the gut microbiota were also evaluated. Our results showed that dietary supplementation with CNP modified the composition of colonic microbiota, where it increased the amounts of some presumably beneficial intestinal bacteria and suppressed the growth of potential bacterial pathogens. These findings suggested CNP supplementation improved the growth performance and immune status, alleviated immunological stress and regulated intestinal ecology in weaned piglets. Based on these beneficial effects, CNP could be applied as a functional feed additives supplemented in piglets diet.


Subject(s)
Chitosan/pharmacology , Gastrointestinal Microbiome/drug effects , Lipopolysaccharides/toxicity , Nanoparticles/chemistry , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Chitosan/chemistry , Diet/veterinary , Dietary Supplements , Hydrocortisone/blood , Immunity, Humoral , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/veterinary , Swine
13.
Environ Pollut ; 244: 792-800, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30390452

ABSTRACT

An anaerobic incubation was launched with varying nitrate (1, 5, 10 and 20 mM exogenous NaNO3) and molybdate (20 mM Na2MoO4, a sulfate-reducing inhibitor) additions to investigate the characteristics of PCP dechlorination, as well as the reduction of natural co-occurring electron acceptors, including NO3-, Fe(III) and SO42-, and the responses of microbial community structures under a unique reductive mangrove soil. Regardless of exogenous addition, nitrate was rapidly eliminated in the first 12 days. The reduction process of Fe(III) was inhibited, while that of SO42- reduction depended on addition concentration as compared to the control. PCP was mainly degraded from orth-position, forming the only intermediate 2,3,4,5-TeCP by anaerobic microbes, with the highest PCP removal rate of average 21.9% achieved in 1 and 5 mM NaNO3 as well as 20 mM Na2MoO4 treatments and the lowest of 7.5% in 20 mM NaNO3 treatment. The effects of nitrate on PCP dechlorination depended on addition concentration, while molybdate promoted PCP attenuation significantly. Analyses of the Illumina sequencing data and the relative abundance of dominant microorganisms indicated that the core functional groups regulated PCP removal at genera level likely included Bacillus, Pesudomonas, Dethiobacter, Desulfoporosinus and Desulfovbrio in the nitrate treatments; while that was likely Sedimentibacter and Geosporobacter_Thermotalea in the molybdate treatment. Nitrate supplement but not over supplement, or addition of molybdate are suggested as alternative strategies for better remediation in the nitrate-deficient and sulfur-accumulated soil ecosystem contaminated by PCP, through regulating the growth of core functional groups and thereby coordinating the interaction between dechlorination and its coupled soil redox processes due to shifts of more available electrons to dechlorination. Our results broadened the knowledge regarding microbial PCP degradation and their interactions with natural soil redox processes under anaerobic soil ecosystems.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Pentachlorophenol/analysis , Pentachlorophenol/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Anaerobiosis , Ferric Compounds/chemistry , Floods , Halogenation , Molybdenum/chemistry , Nitrates/chemistry , Nitrogen Oxides/chemistry , Oxidation-Reduction , Soil/chemistry , Soil Microbiology , Sulfates/chemistry
14.
J Cell Biochem ; 120(3): 3861-3873, 2019 03.
Article in English | MEDLINE | ID: mdl-30304552

ABSTRACT

BACKGROUND: Smilax glabra Roxb, a traditional Chinese herb, has been widely used in folk medicine. The current study was performed to investigate the protective effect of S. glabra Roxb extract, pure total flavonoids from Smilax glabra Roxb (PTFS), on renal interstitial fibrosis (RIF) and its underlying mechanism. METHODS: First, a surgical model of unilateral ureteral obstruction was established in rats to induce RIF. Then, rats were grouped and treated with PTFS at different concentration. Second, HK-2 cells underwent an epithelial-mesenchymal transition (EMT) by the addition of transforming growth factor-ß1 (TGF-ß1). Additionally, HK-2 cells after inducing for EMT were transfected with microRNA-21 (miR-21) mimic or inhibitor. These HK-2 cells were grouped and treated with PTFS at different concentration. Finally, real-time polymerase chain reaction and Western blot analysis were performed to detect the expression of possible signaling factor involved in RIF in renal tissues or HK-2 cells after PTFS treatment. RESULTS: In vivo and in vitro experiments indicated that PTFS treatment could decrease the expression of α-smooth muscle actin (α-SMA; mesenchymal marker) and increase the expression of E-cadherin (epithelial marker) in both messenger RNA and protein level. Moreover, PTFS also attenuated the expression of TGF-ß1/Smad signaling in both renal tissues and HK-2 cells that underwent EMT. Overexpression or inhibition of miR-21 in HK-2 cells activated or blocked the PI3K/Akt signaling via targeting phosphatase and tension homolog (PTEN), and then promoted or suppressed the progress of TGF-ß1-induced EMT by regulating the expression of α-SMA and E-cadherin. Furthermore, PTFS treatment inhibited TGF-ß1-induced EMT progress by blocking miR-21/PTEN/PI3K/Akt signaling. CONCLUSION: PTFS has strong anti-EMT and antifibrosis effects both in vitro and in vivo. The mechanism underlying these effects may be related to inhibition of TGF-ß1/Smad, and their downstream miR-21/PTEN signaling, leading to blocks of EMT process during RIF.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Flavonoids/pharmacology , MicroRNAs/genetics , PTEN Phosphohydrolase/genetics , Protective Agents/pharmacology , Smilax/chemistry , Ureteral Obstruction/drug therapy , Actins/genetics , Actins/metabolism , Animals , Antagomirs/genetics , Antagomirs/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Line, Transformed , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition/genetics , Fibrosis/prevention & control , Flavonoids/isolation & purification , Gene Expression Regulation , Humans , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Male , MicroRNAs/agonists , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Oligoribonucleotides/genetics , Oligoribonucleotides/metabolism , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protective Agents/isolation & purification , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Smad Proteins/genetics , Smad Proteins/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/genetics , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
15.
Mediators Inflamm ; 2018: 7834381, 2018.
Article in English | MEDLINE | ID: mdl-29849495

ABSTRACT

Royal jelly (RJ), a hive product with versatile pharmacological activities, has been used as a traditional functional food to prevent or treat inflammatory diseases. However, little is known about the anti-inflammatory effect of RJ in microglial cells. The aim of this study is to assess the anti-inflammatory effects of RJ in lipopolysaccharide- (LPS-) induced murine immortalized BV-2 cells and to explore the underlying molecular mechanisms. Our results showed that in LPS-stimulated BV-2 cells, RJ significantly inhibited iNOS and COX-2 expression at mRNA and protein levels. The mRNA expression of IL-6, IL-1ß, and TNF-α was also downregulated by RJ in a concentration-dependent manner. Additionally, RJ protected BV-2 cells against oxidative stress by upregulating heme oxygenase-1 (HO-1) expression and by reducing reactive oxygen species (ROS) and nitric oxide (NO) production. Mechanistically, we found that RJ could alleviate inflammatory response in microglia by suppressing the phosphorylation of IκBα, p38, and JNK and by inhibiting the nucleus translocation of NF-κB p65. These findings suggest that RJ might be a promising functional food to delay inflammatory progress by influencing the microglia function.


Subject(s)
Cell Survival/physiology , Inflammation/metabolism , Lipopolysaccharides/toxicity , Animals , Cell Line , Enzyme-Linked Immunosorbent Assay , Fatty Acids , Inflammation/immunology , Mice , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , p38 Mitogen-Activated Protein Kinases/metabolism
16.
Sci Total Environ ; 593-594: 695-703, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28363181

ABSTRACT

Pollutant-degrading bacteria migrated by fungi may enhance the contacts between microorganisms and pollutants and improve the bioremediation efficiency of persistent organic pollutants in soil. Here, the migration of phenanthrene (PHE)-degrading bacteria Massilia sp. WF1 and Mycobacterium sp. WY10 by the hydrophobic fungi Phanerochaete chrysosporium (P. chrysosporium) and its effects on the PHE biodegradation in soil were investigated. Migration of the hydrophilic bacterium WF1 was better than that of the hydrophobic bacterium WY10 by P. chrysosporium mycelia since strain WF1 possesses flagellum and the type III secretion system. The interaction energy change of P. chrysosporium-WF1 was lower, but the interaction forces (van der Waals attractions, capillary forces, and cross-linking effects) were stronger than those of P. chrysosporium-WY10. Thus, the adhesive attraction between strain WF1 and P. chrysosporium was stronger, and consequently, strain WF1 was migrated by P. chrysosporium to a greater extent than WY10. The corresponding migration mechanism was inferred to be a bacterial 'passive' method: bacteria adhered to mycelia before they migrated with the growing mycelia. Moreover, migrated strain WF1 via P. chrysosporium showed effective PHE biodegradation in soil. Fungus-mediated migration of pollutant-degrading bacteria may play an important role in the bioremediation of pollutants in soil.


Subject(s)
Oxalobacteraceae/physiology , Phanerochaete/metabolism , Phenanthrenes/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Bacterial Adhesion , Biodegradation, Environmental , Soil
17.
Am J Chin Med ; 44(7): 1491-1506, 2016.
Article in English | MEDLINE | ID: mdl-27776431

ABSTRACT

Carthamus tinctorius L. is a traditional Chinese medicine that activates blood circulation and dissipates blood stasis, and has been extensively used as antitumor treatment in a clinical setting in single or in compound preparation form. However, empirical evidence and a better understanding of the possible mechanisms involved are still required. Here, we investigated the role of safflower yellow (SY), the active ingredient of C. tinctorius, in the pulmonary metastasis of breast cancer, and the underlying mechanism of action. EGF-meditated time- and dose-dependent cell response profiles were applied to screen for the activity of SY in vitro, while orthotopic lung metastasis and intravenous injection were used to evaluate the antimetastatic role of SY in vivo. SY could dose-dependently inhibit EGF-mediated time- and dose-dependent cell response profiles by inhibiting cytoskeletal rearrangement. We also found that SY significantly inhibited the migration of breast cancer cells in vitro and pulmonary metastasis of breast cancer cells in vivo. Consistent with these phenotypes, formation of invadopodia and the expression of MMP-9 and p-Src proteins were decreased after EGF stimulation in MBA-MD-231 cells treat with SY, as well as in lung metastatic foci. Additionally, circulating tumor cells retained in lung capillaries were also reduced. These results suggest that the antimetastatic effect of SY is due to its inhibition of invadopodia formation, which occurs mainly through Src-dependent cytoskeleton rearrangement. We suggest that SY should be considered as a potential novel therapeutic agent for the treatment of breast cancer.


Subject(s)
Breast Neoplasms/pathology , Carthamus tinctorius/chemistry , Chalcone/analogs & derivatives , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Podosomes/drug effects , Animals , COS Cells , Chalcone/isolation & purification , Chalcone/pharmacology , Chalcone/therapeutic use , Chlorocebus aethiops , Disease Models, Animal , Dose-Response Relationship, Drug , Epidermal Growth Factor , Female , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , MCF-7 Cells , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred BALB C , Phytotherapy , Proto-Oncogene Proteins pp60(c-src)/metabolism
18.
PLoS One ; 11(5): e0155930, 2016.
Article in English | MEDLINE | ID: mdl-27195739

ABSTRACT

Chinese herbs have long been used to treat allergic disease, but recently the development was greatly impeded by the lack of good methods to explore the mechanism of action. Here, we showed the effects of Chinese herb Radix Paeoniae alba were identified and characterized by a mast cell activation assay that involves electronic impedance readouts for dynamic monitoring of cellular responses to produce time-dependent cell responding profiles (TCRPs), and the anti-allergic activities were further confirmed with various conventional molecular and cell biology tools. We found Radix P. alba can dose-dependently inhibit TCPRs, and have anti-allergic function in vitro and in vivo. Radix P. alba suppressed mast cell degranulation not only inhibiting the translocation of granules to the plasma membrane, but also blocking membrane fusion and exocytosis; and that there may be other anti-allergic components in addition to paeoniflorin. Our results suggest that Radix P. alba regulated mast cell activation with multiple targets, and this approach is also suitable for discovering other mast cell degranulation-targeting Chinese herbs and their potential multi-target mechanisms.


Subject(s)
Anti-Allergic Agents/pharmacology , Mast Cells/drug effects , Paeonia/chemistry , Plant Extracts/pharmacology , Animals , Cell Line, Tumor , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , Exocytosis , Male , Mast Cells/metabolism , Membrane Fusion , Mice , Mice, Inbred ICR , Rats
19.
Int J Biol Macromol ; 86: 848-56, 2016 May.
Article in English | MEDLINE | ID: mdl-26854884

ABSTRACT

Chitosan nanoparticles (CNP), an extensively oral-administered drug carrier, was investigated for the anti-inflammatory effects on LPS-inflamed Caco-2 cells and the relate mechanisms. CNP could alleviate the decrease of transepithelial electrical resistance (TEER) induced by LPS in Caco-2 monolayer, and significantly inhibit LPS-induced production of TNF-α, MIF, IL-8 and MCP-1 in a dose-dependent manner. PCR array assay revealed that CNP down-regulated the mRNA expression levels of TLR4 in LPS-inflamed Caco-2 cells. CNP was further showed to reduce cytoplasmic IκB-α degradation and nuclear NF-κB p65 levels in LPS-inflamed Caco-2 cells. These results suggested that CNP suppressed LPS-induced inflammatory response by decreasing permeability of intestinal epithelial monolayer and secretion of pro-inflammatory cytokine in Caco-2 cells, which were partially mediated by NF-κB signaling pathway.


Subject(s)
Chitosan/chemistry , Chitosan/pharmacology , Lipopolysaccharides/pharmacology , Nanoparticles , Signal Transduction/drug effects , Transcription Factor RelA/metabolism , Active Transport, Cell Nucleus/drug effects , Caco-2 Cells , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Survival/drug effects , Cytokines/biosynthesis , Gene Expression Regulation/drug effects , Humans , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , NF-KappaB Inhibitor alpha/metabolism , Proteolysis/drug effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
20.
Nutr Cancer ; 67(7): 1151-8, 2015.
Article in English | MEDLINE | ID: mdl-26359675

ABSTRACT

Epidemiological and experimental evidence supports the key role of diet in the development of many types of cancer. Recent studies have suggested that dietary modifications may be beneficial for individuals at high risk for hepatocellular carcinoma (HCC). In this study, we investigated the effect of a high-protein (HP; 20% casein) dietondiethylnitrosamine (DEN)-induced hepatocarcinogenesis. Mice were given free access to water with 30 µg/ml DEN and fed a normal or HP diet for 22 wk. The results showed mice consuming HP diets had reduced mortality rates and body weights and lower hepatic enzyme activity compared to DEN-treated mice on a normal diet. HP consumption also promoted collagen accumulation in the liver, and reduced numbers of proliferating hepatocytes and infiltrating inflammatory cells, as well as decreased expression of inflammatory factor interleukin-1ß, and nuclear factor κB activation. These data indicate that HP diets can inhibit DEN-induced hepatocarcinogenesis via suppression of the inflammatory response and provide a new evidence for the dietary management of clinical patients with hepatocellular carcinoma.


Subject(s)
Dietary Proteins/pharmacology , Diethylnitrosamine/toxicity , Liver Neoplasms, Experimental/diet therapy , Animals , Caseins/pharmacology , Cell Proliferation/drug effects , Collagen/metabolism , Dietary Proteins/chemistry , Hepatocytes/drug effects , Hepatocytes/pathology , Interleukin-1beta/metabolism , Liver/drug effects , Liver/pathology , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/mortality , Liver Neoplasms, Experimental/pathology , Male , Mice, Inbred C3H , NF-kappa B/metabolism , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...