Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(1): 74-81, 2024 Jan 15.
Article in Chinese | MEDLINE | ID: mdl-38225845

ABSTRACT

Objective: To investigate the effects and underlying mechanisms of VX765 on osteoarthritis (OA) and chondrocytes inflammation in rats. Methods: Chondrocytes were isolated from the knee joints of 4-week-old Sprague Dawley (SD) rats. The third-generation cells were subjected to cell counting kit 8 (CCK-8) analysis to assess the impact of various concentrations (0, 1, 5, 10, 20, 50, 100 µmol/L) of VX765 on rat chondrocyte activity. An in vitro lipopolysaccharide (LPS) induced cell inflammation model was employed, dividing cells into control group, LPS group, VX765 concentration 1 group and VX765 concentration 2 group without obvious cytotoxicity. Western blot, real-time fluorescence quantitative PCR, and ELISA were conducted to measure the expression levels of inflammatory factors-transforming growth factor ß 1 (TGF-ß 1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Additionally, Western blot and immunofluorescence staining were employed to assess the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Thirty-two SD rats were randomly assigned to sham surgery group (group A), OA group (group B), OA+VX765 (50 mg/kg) group (group C), and OA+VX765 (100 mg/kg) group (group D), with 8 rats in each group. Group A underwent a sham operation with a medial incision, while groups B to D underwent additional transverse incisions to the medial collateral ligament and anterior cruciate ligament, with removal of the medial meniscus. One week post-surgery, groups C and D were orally administered 50 mg/kg and 100 mg/kg VX765, respectively, while groups A and B received an equivalent volume of saline. Histopathological examination using HE and safranin-fast green staining was performed, and Mankin scoring was utilized for evaluation. Immunohistochemical staining technique was employed to analyze the expressions of matrix metalloproteinase 13 (MMP-13) and collagen type Ⅱ. Results: The CCK-8 assay indicated a significant decrease in cell viability at VX765 concentrations exceeding 10 µmol/L ( P<0.05), so 4 µmol/L and 8 µmol/L VX765 without obvious cytotoxicity were selected for subsequent experiments. Following LPS induction, the expressions of TGF-ß 1, IL-6, and TNF-α in cells significantly increased when compared with the control group ( P<0.05). However, intervention with 4 µmol/L and 8 µmol/L VX765 led to a significant decrease in expression compared to the LPS group ( P<0.05). Western blot and immunofluorescence staining demonstrated a significant upregulation of Nrf2 pathway-related molecules Nrf2 and HO-1 protein expressions by VX765 ( P<0.05), indicating Nrf2 pathway activation. Histopathological examination of rat knee joint tissues and immunohistochemical staining revealed that, compared to group B, treatment with VX765 in groups C and D improved joint structural damage in rat OA, alleviated inflammatory reactions, downregulated MMP-13 expression, and increased collagen type Ⅱ expression. Conclusion: VX765 can improve rat OA and reduce chondrocyte inflammation, possibly through the activation of the Nrf2 pathway.


Subject(s)
Chondrocytes , Dipeptides , Osteoarthritis , para-Aminobenzoates , Rats , Animals , Chondrocytes/metabolism , Matrix Metalloproteinase 13/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism , Collagen Type II/metabolism , Interleukin-6 , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Inflammation/drug therapy , Osteoarthritis/metabolism , Transforming Growth Factor beta1/metabolism
2.
J Microbiol Biotechnol ; 32(10): 1262-1274, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36224755

ABSTRACT

Cholangiocarcinoma (CCA) is a complex and refractor type of cancer with global prevalence. Several barriers remain in CCA diagnosis, treatment, and prognosis. Therefore, exploring more biomarkers and therapeutic drugs for CCA management is necessary. CCA gene expression data was downloaded from the TCGA and GEO databases. KEGG enrichment, GO analysis, and protein-protein interaction network were used for hub gene identification. miRNA were predicted using Targetscan and validated according to several GEO databases. The relative RNA and miRNA expression levels and prognostic information were obtained from the GEPIA. The candidate drug was screened using pharmacophore-based virtual screening and validated by molecular modeling and through several in vitro studies. 301 differentially expressed genes (DEGs) were screened out. Complement and coagulation cascades-related genes (including AHSG, F2, TTR, and KNG1), and cell cycle-related genes (including CDK1, CCNB1, and KIAA0101) were considered as the hub genes in CCA progression. AHSG, F2, TTR, and KNG1 were found to be significantly decreased and the eight predicted miRNA targeting AHSG, F2, and TTR were increased in CCA patients. CDK1, CCNB1, and KIAA0101 were found to be significantly abundant in CCA patients. In addition, Molport-003-703-800, which is a compound that is derived from pharmacophores-based virtual screening, could directly bind to CDK1 and exhibited anti-tumor activity in cholangiocarcinoma cells. AHSG, F2, TTR, and KNG1 could be novel biomarkers for CCA. Molport-003-703-800 targets CDK1 and work as potential cell cycle inhibitors, thereby having potential for consideration for new chemotherapeutics for CCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , MicroRNAs , Humans , Computational Biology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , MicroRNAs/genetics , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology
3.
Curr Med Sci ; 42(5): 1046-1054, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36178576

ABSTRACT

OBJECTIVE: To explore the role and underlying mechanism of GW842166X on osteoarthritis and osteoarthritis-associated abnormal catabolism. METHODS: The extracted mouse chondrocytes were treated with GW842166X followed by lipopolysaccharide (LPS). The chondrocytes were divided into the control group, LPS group, LPS+50 nmol/L GW842166X group, and LPS+100 nmol/L GW842166X group. The cytotoxicity of GW842166X was tested using the CCK-8 assay. Western blot, RT-qPCR, and ELISA were applied to evaluate the expression of the inflammatory biomarkers in mouse chondrocytes. The expression of extracellular matrix molecules was detected by the Western blot, RT-qPCR, and immunofluorescence. Additionally, the activity of NF-κB was checked by the Western blot and immunofluorescence. The mouse Hulth models were generated to examine the in vivo effects of GW842166X on osteoarthritis. Hematoxylin and eosin staining, safranin O/fast green staining, and immunohistochemistry were applied to detect the histological changes. RESULTS: GW842166X below 200 µmol/L had no cytotoxicity on the mouse chondrocytes. LPS-induced high expression of TGF-ß1, IL-10, TNF-α, and IL-6 was significantly reduced by GW842166X. In addition, GW842166X upregulated the expression of aggrecan and collagen type III, which was downregulated after the LPS stimulation. The upregulated expression of ADAMTS-5 and MMP-13 by LPS stimulation was dropped in response to the GW842166X treatment. Furthermore, LPS decreased the IκBα expression in the cytoplasm and increased the nuclear p65 expression. However, these changes were reversed by the GW842166X pretreatment. Moreover, the damages in the knees caused by the Hulth surgery in mice were restored by GW842166X. CONCLUSION: GW842166X impeded the LPS-mediated catabolism in mouse chondrocytes, thereby inhibiting the progression of osteoarthritis.


Subject(s)
Chondrocytes , Osteoarthritis , Pyrans , Pyrimidines , Animals , Mice , Aggrecans/metabolism , Collagen Type III/metabolism , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lipopolysaccharides , Matrix Metalloproteinase 13/metabolism , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha/metabolism , Pyrans/pharmacology , Pyrimidines/pharmacology
4.
J Int Med Res ; 49(5): 3000605211009722, 2021 May.
Article in English | MEDLINE | ID: mdl-34018826

ABSTRACT

OBJECTIVE: This study examined the role of agrin in the development of cholangiocarcinoma (CCA). METHODS: Western blotting was performed to detect the expression of target genes. The correlation between agrin expression and prognosis was analyzed using the Kaplan-Meier method. Proliferation, migration, invasion, and tumorigenesis were examined in CCA cells and tissues using the Cell Counting Kit-8 assay, cell cycle analysis, transwell migration assay, and nude mouse tumorigenicity assay in vivo, respectively. RESULTS: Agrin expression was significantly upregulated in CCA tissues compared with that in adjacent non-tumor tissues, and agrin expression was correlated with poorer tumor characteristics such as portal vein tumor thrombus, intrahepatic metastasis, and worse survival. Forced agrin expression in CCA cells apparently promoted proliferation, colony formation, migration, invasion, and cell cycle progression, but agrin depletion had the opposite effects. Furthermore, agrin-depleted CCA cells developed fewer and smaller tumors than control cells in vivo. Mechanistic analyses indicated that agrin activated the Hippo signaling pathway and induced the translocation of YAP to the nucleus. CONCLUSIONS: Agrin promoted CCA progression by activating the Hippo signaling pathway, suggesting its promise as a target for CCA therapy.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Agrin , Animals , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cholangiocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Mice , Prognosis
5.
Onco Targets Ther ; 12: 5153-5162, 2019.
Article in English | MEDLINE | ID: mdl-31303768

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the second leading cause of death among cancers worldwide. In this study, we aimed to identify the molecular target genes and detect the key mechanisms of HCC. Three gene expression profiles (GSE84006, GSE14323, GSE14811) and two miRNA expression profiles (GSE40744, GSE36915) were analyzed to determine the molecular target genes, microRNAs (miRNAs) and the potential molecular mechanisms in HCC. METHODS: All profiles were extracted from the Gene Expression Omnibus database. The identification of the differentially expressed genes (DEGs) was analyzed by the GEO2R method. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and gene ontology (GO) enrichment analysis performed database for Integrated Discovery, Visualization and Annotation. The miRNA-gene network and protein-protein interaction (PPI) network were correlated by the Cytoscape software. The key target genes were identified by the CytoHubba plugin, Molecular Complex Detection (MCODE) plugin and miRNA-gene network. The identified hub genes were testified for survival curve using the Kaplan-Meier plotter database. RESULTS: Expression profiles had 592 overlapped DEGs. The majority of the DEGs were enriched in membrane-bounded organelles and intracellular membrane-bounded organelles. These DEGs were significantly enriched in metabolic, protein processing in the endoplasmic reticulum and thyroid cancer pathways. PPI network analysis showed these genes were mostly involved in the pathogenic Escherichia coli infection and the regulation of actin cytoskeleton pathways. Combining these results, we identified 10 key genes involving in the progression of HCC. Finally, PLK1, PRCC, PRPF4 and PSMA7 exhibited higher expression levels in HCC patients with poor prognosis than those for lower expression via Kaplan-Meier plotter database. CONCLUSION: PLK1, PRCC, PRPF4 and PSMA7 could be potential biomarkers or therapeutic targets for HCC. Meanwhile, the metabolic pathway, protein processing in the endoplasmic reticulum and the thyroid cancer pathway may play vital roles in the progression of HCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...