Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(37): 20261-20272, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37452768

ABSTRACT

The oxygen evolution reaction (OER) plays a vital role in renewable energy technologies, including in fuel cells, metal-air batteries, and water splitting; however, the currently available catalysts still suffer from unsatisfactory performance due to the sluggish OER kinetics. Herein, we developed a new catalyst with high efficiency in which the dynamic exchange mechanism of active Fe sites in the OER was regulated by crystal plane engineering and pore structure design. High-density nanoholes were created on cobalt hydroxide as the catalyst host, and then Fe species were filled inside the nanoholes. During the OER, the dynamic Fe was selectively and strongly adsorbed by the (101̅0) sites on the nanohole walls rather than the (0001) basal plane, and at the same time the space-confining effect of the nanohole slowed down the Fe diffusion from catalyst to electrolyte. As a result, a local high-flux Fe dynamic equilibrium inside the nanoholes for OER was achieved, as demonstrated by the Fe57 isotope labeled mass spectrometry, thereby delivering a high OER activity. The catalyst showed a remarkably low overpotential of 228 mV at a current density of 10 mA cm-2, which is among the best cobalt-based catalysts reported so far. This special protection strategy for Fe also greatly improved the catalytic stability, reducing the Fe leaching amount by 2 orders of magnitude compared with the pure Fe hydroxide catalyst and thus delivering a long-term stability of 130 h. An assembled Zn-air battery was stably cycled for 170 h with a low discharge/charge voltage difference of 0.72 V.

2.
Adv Mater ; 34(20): e2200088, 2022 May.
Article in English | MEDLINE | ID: mdl-35289964

ABSTRACT

The oxygen evolution reaction (OER) is a key reaction in water splitting and metal-air batteries, and transition metal hydroxides have demonstrated the most electrocatalytic efficiency. Making the hydroxides thinner for more surface commonly fails to increase the active site number, because the real active sites are the edges. Up to now, the overpotentials of most state-of-the-art OER electrocatalysts at a current density of 10 mA cm-2 (η10 ) are still larger than 200 mV. Herein, a novel design of mesoporous single crystal (MSC) with an Fe-rich skin to boost the OER is shown. The edges around the mesopores provide lots of real active sites and the Fe modification on these sites further improves the intrinsic activity. As a result, an ultralow η10 of 185 mV is achieved, and the turnover frequency based on Fe atoms is as high as 16.9 s-1 at an overpotential of 350 mV. Moreover, the catalyst has an excellent catalytic stability, indicated by a negligible current drop after 10 000 cyclic voltammetry cycles. The catalyst enables Zn-air batteries to run stably over 270 h with a low charge voltage of 1.89 V. This work shows that MSC materials can provide new opportunities for the design of electrocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...