Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 20: 296-308, 2022.
Article in English | MEDLINE | ID: mdl-35035784

ABSTRACT

Transcription regulation in metazoa is controlled by the binding events of transcription factors (TFs) or regulatory proteins on specific modular DNA regulatory sequences called cis-regulatory modules (CRMs). Understanding the distributions of CRMs on a genomic scale is essential for constructing the metazoan transcriptional regulatory networks that help diagnose genetic disorders. While traditional reporter-assay CRM identification approaches can provide an in-depth understanding of functions of some CRM, these methods are usually cost-inefficient and low-throughput. It is generally believed that by integrating diverse genomic data, reliable CRM predictions can be made. Hence, researchers often first resort to computational algorithms for genome-wide CRM screening before specific experiments. However, current existing in silico methods for searching potential CRMs were restricted by low sensitivity, poor prediction accuracy, or high computation time from TFBS composition combinatorial complexity. To overcome these obstacles, we designed a novel CRM identification pipeline called regCNN by considering the base-by-base local patterns in TF binding motifs and epigenetic profiles. On the test set, regCNN shows an accuracy/auROC of 84.5%/92.5% in CRM identification. And by further considering local patterns in epigenetic profiles and TF binding motifs, it can accomplish 4.7% (92.5%-87.8%) improvement in the auROC value over the average value-based pure multi-layer perceptron model. We also demonstrated that regCNN outperforms all currently available tools by at least 11.3% in auROC values. Finally, regCNN is verified to be robust against its resizing window hyperparameter in dealing with the variable lengths of CRMs. The model of regCNN can be downloaded athttp://cobisHSS0.im.nuk.edu.tw/regCNN/.

2.
Comput Struct Biotechnol J ; 19: 5149-5159, 2021.
Article in English | MEDLINE | ID: mdl-34589189

ABSTRACT

Transcript isoforms regulated by alternative splicing can substantially impact carcinogenesis, leading to a need to obtain clues for both gene differential expression and malfunctions of isoform distributions in cancer studies. The Cancer Genome Atlas (TCGA) project was launched in 2008 to collect cancer-related genome mutation raw data from the population. While many repositories tried to add insights into the raw data in TCGA, no existing database provides both comprehensive gene-level and isoform-level cancer stage marker investigation and survival analysis. We constructed Cancer DEIso to facilitate in-depth analyses for both gene-level and isoform-level human cancer studies. Patient RNA-seq data, sample sheets, patient clinical data, and human genome datasets were collected and processed in Cancer DEIso. And four functions to search differentially expressed genes/isoforms between cancer stages were implemented: (i) Search potential gene/isoform markers for a specified cancer type and its two stages; (ii) Search potentially induced cancer types and stages for a gene/isoform; (iii) Expression survival analysis on a given gene/isoform for some cancer; (iv) Gene/isoform stage expression comparison visualization. As an example, we demonstrate that Cancer DEIso can indicate potential colorectal cancer isoform diagnostic markers that are not easily detected when only gene-level expressions are considered. Cancer DEIso is available at http://cosbi4.ee.ncku.edu.tw/DEIso/.

SELECTION OF CITATIONS
SEARCH DETAIL
...