Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 15: 114, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25886737

ABSTRACT

BACKGROUND: The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune responses against the parasite, as well as a valuable tool for vaccine development. We have previously prolonged the survival time of mice challenged with the RH strain of T. gondii by immunizing the mice with a eukaryotic vector expressing the protein ROP18 of T. gondii. We are now looking for ways to improve this vaccination strategy and enhance protection. METHODS: In this study, we constructed and characterized a novel recombinant canine adenovirus type 2 expressing ROP18 (CAV-2-ROP18) of T. gondii by cytopathic effect (CPE) and indirect immunofluorescence assay (IFA) following transfection into MDCK cells. Intramuscular immunization of Kunming mice with CAV-2-ROP18 was carried out to evaluate humoral and cellular immune responses. RESULTS: The vaccination of experimental mice with CAV-2-ROP18 elicited antibody production against ROP18, including high levels of a mixed IgG1/IgG2a and significant production of IFN-γ or IL-2, and displayed a significant bias towards a helper T cell type 1 (Th1) profile. Furthermore, the presence of T. gondii-specific IFN-γ-production and TNF-α-production T cells was elicited in both CD4+ and CD8+ T cell compartments. Significantly higher survival rates (40%) occurred in the experimental group, and a reduction in brain cyst burden was detected in vaccinated mice. CONCLUSION: These results demonstrate the potential use of a CAV vector harboring the ROP18 gene in the development of a vaccine against acute and chronic toxoplasmosis.


Subject(s)
Adenoviruses, Canine/immunology , Protein Serine-Threonine Kinases/immunology , Protozoan Vaccines , Toxoplasma/immunology , Toxoplasmosis, Animal/prevention & control , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Female , Immunity, Cellular/immunology , Injections, Intramuscular , Mice , Protozoan Proteins , Specific Pathogen-Free Organisms , Toxoplasmosis, Animal/immunology , Vaccines, DNA/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...