Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Front Cardiovasc Med ; 11: 1371513, 2024.
Article in English | MEDLINE | ID: mdl-38725835

ABSTRACT

Objective: To investigate the causal contributions of Sodium-glucose cotransporter 2 (SGLT2) inhibition on Heart Failure (HF) and identify the circulating proteins that mediate SGLT2 inhibition's effects on HF. Methods: Applying a two-sample, two-step Mendelian Randomization (MR) analysis, we aimed to estimate: (1) the causal impact of SGLT2 inhibition on HF; (2) the causal correlation of SGLT2 inhibition on 4,907 circulating proteins; (3) the causal association of SGLT2 inhibition-driven plasma proteins on HF. Genetic variants linked to SGLT2 inhibition derived from the previous studies. The 4,907 circulating proteins were derived from the deCODE study. Genetic links to HF were obtained through the Heart Failure Molecular Epidemiology for Therapeutic Targets (HERMES) consortium. Results: SGLT2 inhibition demonstrated a lower risk of HF (odds ratio [OR] = 0.44, 95% CI [0.26, 0.76], P = 0.003). Among 4,907 circulating proteins, we identified leucine rich repeat transmembrane protein 2 (LRRTM2), which was related to both SGLT2 inhibition and HF. Mediation analysis revealed that the impact of SGLT2 inhibition on HF operates indirectly through LRRTM2 [ß = -0.20, 95% CI (-0.39, -0.06), P = 0.02] with a mediation proportion of 24.6%. Colocalization analysis provided support for the connections between LRRTM2 and HF. Conclusion: The study indicated a causative link between SGLT2 inhibition and HF, with plasma LRRTM2 potentially serving as a mediator.

2.
Front Cardiovasc Med ; 11: 1339094, 2024.
Article in English | MEDLINE | ID: mdl-38803667

ABSTRACT

Objective: To investigate the causal role of venous thrombolism mediating sodium-glucose cotransporter 2 (SGLT2) inhibition in death due to cardiac causes using Mendelian randomization (MR). Methods: A two-sample two-step MR was used to determine (1) the causal effects of SGLT2 inhibition on death due to cardiac causes; (2) the causal effects of venous thrombolism on death due to cardiac causes; and (3) the mediation effects of venous thrombolism. Genetic proxies for SGLT2 inhibition were identified as variants in the SLC5A2 gene that were associated with both levels of gene expression and hemoglobin A1c. Additionally, employing MR to investigate the causal association between SGLT2 inhibition and cardiac arrest as well as coronary heart disease (CHD). Results: SGLT2 inhibition was associated with a lower risk of death due to cardiac causes (odds ratio [OR] = 0.983, [95% CI = 0.972, 0.993], P = 0.0016). Venous thrombolism was associated with death due to cardiac causes ([OR] = 1.031, [95% CI = 1.005, 1.057], P = 0.0199). Mediation analysis showed evidence of indirect effect of SGLT2 inhibition on death due to cardiac causes through venous thrombolism [ß = -0.0015, (95% CI = -0.0032 -0.0002), P = 0.042], with a mediated proportion of 8.9% (95% CI = 1.2%, 18.7%) of the total. Furthermore, SGLT2 inhibition was linked to a lower risk of cardiac arrest ([OR] = 0.097, [95% CI = 0.013, 0.742], P = 0.025). SGLT2 inhibition was linked to a lower risk of CHD ([OR] = 0.957, [95% CI = 0.932, 0.982], P = 0.0009). Conclusions: Our study identified the causal roles of SGLT2 inhibition in venous thrombolism. SGLT2 inhibition may influence death due to cardiac causes through venous thrombolism. Additionally, SGLT2 inhibition was associated with reduced risk of cardiac arrest and CHD.

3.
Cell Mol Life Sci ; 81(1): 228, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777955

ABSTRACT

Diabetic cardiomyopathy (DCM) is a prevalent complication of type 2 diabetes (T2D). 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) is a glycolysis regulator. However, the potential effects of PFKFB3 in the DCM remain unclear. In comparison to db/m mice, PFKFB3 levels decreased in the hearts of db/db mice. Cardiac-specific PFKFB3 overexpression inhibited myocardial oxidative stress and cardiomyocyte apoptosis, suppressed mitochondrial fragmentation, and partly restored mitochondrial function in db/db mice. Moreover, PFKFB3 overexpression stimulated glycolysis. Interestingly, based on the inhibition of glycolysis, PFKFB3 overexpression still suppressed oxidative stress and apoptosis of cardiomyocytes in vitro, which indicated that PFKFB3 overexpression could alleviate DCM independent of glycolysis. Using mass spectrometry combined with co-immunoprecipitation, we identified optic atrophy 1 (OPA1) interacting with PFKFB3. In db/db mice, the knockdown of OPA1 receded the effects of PFKFB3 overexpression in alleviating cardiac remodeling and dysfunction. Mechanistically, PFKFB3 stabilized OPA1 expression by promoting E3 ligase NEDD4L-mediated atypical K6-linked polyubiquitination and thus prevented the degradation of OPA1 by the proteasomal pathway. Our study indicates that PFKFB3/OPA1 could be potential therapeutic targets for DCM.


Subject(s)
Diabetic Cardiomyopathies , GTP Phosphohydrolases , Myocytes, Cardiac , Phosphofructokinase-2 , Ubiquitination , Phosphofructokinase-2/metabolism , Phosphofructokinase-2/genetics , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/genetics , Mice , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Oxidative Stress , Apoptosis/genetics , Myocardium/metabolism , Myocardium/pathology , Mice, Inbred C57BL , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , Glycolysis , Humans , Protein Stability
4.
Sleep Med ; 119: 480-487, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38795402

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) initially emerged as oral antidiabetic medication but were subsequently discovered to exhibit pleiotropic actions. Insomnia is a prevalent and debilitating sleep disorder. To date, the causality between SGLT2 inhibitors and insomnia remains unclear. This study aims to evaluate the causality between SGLT2 inhibitors and insomnia and identify potential plasma protein mediators. METHODS: Using a two-sample Mendelian Randomization (MR) analysis, we estimated the causality of SGLT2 inhibition on insomnia and sleep duration. Additionally, employing a two-step and proteome-wide MR analysis, we evaluated the causal link of SGLT2 inhibition on 4907 circulating proteins and the causality of SGLT2 inhibition-driven plasma proteins on insomnia. We applied a false discovery rate (FDR) correction for multiple comparisons. Furthermore, mediation analyses were used to identify plasma proteins that mediate the effects of SGLT2 inhibition on insomnia. RESULTS: SGLT2 inhibition was negatively correlated with insomnia (odds ratio [OR] = 0.791, 95 % confidence interval [CI] [0.715, 0.876], P = 5.579*10^-6) and positively correlated with sleep duration (ß = 0.186, 95 % CI [0.059, 0.314], P = 0.004). Among the 4907 circulating proteins, diadenosine tetraphosphatase (Ap4A) was identified as being linked to both SGLT2 inhibition and insomnia. Mediation analysis indicated that the effect of SGLT2 inhibition on insomnia partially operates through Ap4A (ß = -0.018, 95 % CI [-0.036, -0.005], P = 0.023), with a mediation proportion of 7.7 %. CONCLUSION: The study indicated a causality between SGLT2 inhibition and insomnia, with plasma Ap4A potentially serving as a mediator.

5.
Ann Med ; 56(1): 2346537, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38696817

ABSTRACT

BACKGROUND: To investigate the effectiveness of the intervention with critical value management and push short messaging service (SMS), and to determine improvement in the referral rate of patients with positive hepatitis C antibody (anti-HCV). METHODS: No intervention was done for patients with positive anti-HCV screening results from 1 January 2015 to 31 October 2021. Patients with positive anti-HCV results at our hospital from 1 November 2021 to 31 July 2022 were informed vide critical value management and push SMS. For inpatients, a competent physician was requested to liaise with the infectious disease physician for consultation, and patients seen in the OPD (outpatient department) were asked to visit the liver disease clinic. The Chi-square correlation test, one-sided two-ratio test and linear regression were used to test the relationship between intervention and referral rate. RESULTS: A total of 638,308 cases were tested for anti-hepatitis C virus (HCV) in our hospital and 5983 of them were positive. 51.8% of the referred patients were aged 18-59 years and 10.8% were aged ≥75 years. The result of Chi-square correlation test between intervention and referral was p = .0000, p < .05. One-sided two-ratio test was performed for statistics of pre-intervention referral rate (p1) and post-intervention referral rate (p2). Normal approximation and Fisher's exact test for the results obtained were 0.000, p < .05, and the alternative hypothesis p1 - p2 < 0 was accepted. The linear regression equation was referral = 0.1396 × intervention + 0.3743, and the result model p = 8.79e - 09, p < .05. The model was significant, and the coefficient of intervention was 0.1396. CONCLUSIONS: The interventions of critical value management and push SMS were correlated with the referral rate of patients with positive anti-HCV.


Subject(s)
Hepatitis C , Referral and Consultation , Humans , Referral and Consultation/statistics & numerical data , Middle Aged , Male , Female , Adult , Aged , Adolescent , Hepatitis C/drug therapy , Hepatitis C/diagnosis , Young Adult , Hepatitis C Antibodies/blood , Text Messaging , Quality Improvement
6.
Eur J Pharmacol ; 976: 176619, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679119

ABSTRACT

AIMS: Sodium-glucose cotransporter 2 (SGLT2) inhibitors offer a novel therapeutic avenue for myocardial infarction (MI). However, the exact nature of this relationship and the underlying mechanisms are not fully understood. METHODS: Utilizing a two-sample Mendelian Randomization (MR) analysis, we elucidated the causal effects stemming from the inhibition of SGLT2 on MI. Then, The pool of 4907 circulating proteins within the plasma proteome were utilized to explore the mediators of SGLT2 inhibitors on MI. Protein-protein network and enrichment analysis were conducted to clarify the potential mechanism. Finally, employing MR analysis and meta-analysis techniques, we systematically assessed the causal associations between SGLT2 inhibition and coronary heart diseases (CHD). RESULTS: SGLT2 inhibition (per 1 SD decrement in HbA1c) was associated with reduced risk of MI (odds ratio [OR] = 0.462, [95% CI 0.222, 0.958], P = 0.038). Among 4907 circulating proteins, we identified APOB and CCL17 which were related to both SGLT2 inhibition and MI. Mediation analysis showed evidence of the indirect effect of SGLT2 inhibition on MI through APOB (ß = -0.557, 95%CI [-1.098, -0.155]) with a mediated proportion of 72%, and CCL17 (ß = -0.176, 95%CI [-0.332, -0.056]) with a mediated proportion of 17%. The meta-analysis result showed that SGLT2 inhibition was associated with a lower risk of CHD. CONCLUSION: Based on proteome-wide mendelian randomization, APOB and CCL17 were seen as mediators in the protective effect of SGLT2 inhibition against myocardial infarction.

7.
Protein Sci ; 33(4): e4952, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501491

ABSTRACT

The therapeutic efficacy of peptide-based drugs is commonly hampered by the intrinsic propensity to aggregation. A notable example is human calcitonin (hCT), a peptide hormone comprising 32 amino acids, which is synthesized and secreted by thyroid gland parafollicular cells (C cells). This hormone plays a vital role in regulating blood calcium levels and upholding bone integrity. Despite its physiological importance, utilizing hCT as a drug is hampered by its inclination to form amyloid. To address this limitation, an alternative is provided by salmon calcitonin (sCT), which possesses a lower aggregation propensity. Although sharing the same disulfide bond at the N terminus as hCT, sCT differs from hCT at a total of 16 amino acid positions. However, due to the dissimilarity in sequences, using sCT as a clinical replacement occasionally results in adverse side effects in patients. Earlier investigations have highlighted the significant roles of Tyr-12 and Asn-17 in inducing the formation of amyloid fibrils. By introducing double mutations at these sites, the ability to hinder aggregation can be significantly augmented. This study delves into the oligomerization and helical structure formation of the hCT double mutant (Y12LN17H hCT, noted as DM hCT), as well as two single mutants (Y12L and N17H), aiming to elucidate the mechanism behind hCT fibrillization. In addition, computational prediction tools were employed again to identify potential substitutes. Although the results yielded were not entirely satisfactory, a comparison between the newly examined and previously found hCT double mutants provides insights into the reduced aggregation propensity of the latter. This research endeavor holds the promise of informing the design of more effective therapeutic peptide drugs in the future.


Subject(s)
Calcitonin , Humans , Calcitonin/genetics , Calcitonin/metabolism , Calcitonin/pharmacology , Mutation
8.
Front Pharmacol ; 15: 1327033, 2024.
Article in English | MEDLINE | ID: mdl-38469409

ABSTRACT

Ginsenoside Rg3, a compound derived from Panax ginseng C. A. Mey., is increasingly recognized for its wide range of pharmacological effects. Under the worldwide healthcare challenges posed by heart diseases, Rg3 stands out as a key subject in modern research on Chinese herbal medicine, offering a novel approach to therapy. Mental illnesses are significant contributors to global disease mortality, and there is a well-established correlation between cardiac and psychiatric conditions. This connection is primarily due to dysfunctions in the sympathetic-adrenomedullary system (SAM), the hypothalamic-pituitary-adrenal axis, inflammation, oxidative stress, and brain-derived neurotrophic factor impairment. This review provides an in-depth analysis of Rg3's therapeutic benefits and its pharmacological actions in treating cardiac and mental health disorders respectively. Highlighting its potential for the management of these conditions, Rg3 emerges as a promising, multifunctional therapeutic agent.

9.
Article in English | MEDLINE | ID: mdl-38164762

ABSTRACT

WHAT IS KNOWN ABOUT THE SUBJECT?: Loneliness is common among young and middle-aged stroke survivors. It not only hinders the recovery of their neurological and physical functions but also increases the risk of stroke recurrence, disability, and even death. Improving the mental health of young and middle-aged stroke survivors is of utmost importance. However, previous research has not yet investigated the impact of interpersonal sensitivity and resilience on the relationship between stigma and feelings of loneliness. WHAT THE PAPER ADDS TO EXISTING KNOWLEDGE?: This study confirms that stigma has a positive impact on loneliness among young and middle-aged stroke survivors. Interpersonal sensitivity partially mediates the relationship between stigma and loneliness, and resilience plays a moderating role in the mediating mechanism. WHAT ARE THE IMPLICATIONS FOR PRACTICE?: Mental health nurses can formulate nursing interventions to reduce loneliness of young and middle-aged stroke survivors with the goals of improving stigma, reducing interpersonal sensitivity and cultivating resilience. ABSTRACT: Introduction Previous studies have not explored the impact of interpersonal sensitivity and resilience on the relationship between stigma and loneliness. However, improving the resilience of young and middle-aged stroke survivors and increasing their social participation is of great significance for reducing patients' loneliness of patients and promoting their physical and mental rehabilitation. Aims To investigate the influence of stigma, interpersonal sensitivity and resilience on loneliness among young and middle-aged stroke survivors. Methods A cross-sectional design was used to collect data. A total of 330 participants completed measures of stigma, resilience, interpersonal sensitivity and loneliness. The descriptive statistical approach, Pearson's correlation analysis and Hayes' PROCESS Macro Model 4 and 7 in regression analysis were used to analyse the available data. Results The results revealed that young and middle-aged stroke survivors' stigma, resilience, interpersonal sensitivity and loneliness were significantly correlated between every two variables, with coefficients ranging between -0.157 and 0.682. Interpersonal sensitivity played a partial mediating role in stigma and loneliness, accounting for 63.27% of the total effect; This process was moderated by resilience. Discussion Stigma positively predicts participants' loneliness. As a mediating mechanism with moderating, interpersonal sensitivity and resilience further explain how stigma affects loneliness. Implications for Practice Understanding this mechanism is of guiding significance to reduce loneliness of young and middle-aged stroke patients and promote their physical and mental rehabilitation.

10.
Biophys Chem ; 304: 107129, 2024 01.
Article in English | MEDLINE | ID: mdl-37948788

ABSTRACT

Islet amyloid polypeptide (IAPP), also known as amylin, is a polypeptide hormone co-secreted with insulin by pancreatic ß-cells. In general, IAPP is soluble and lacks a defined structure. However, under certain conditions, these peptides tend to aggregate into soluble oligomers, eventually forming insoluble amyloid fibrils with typical cross-ß-sheet structures. Amylin aggregates, therefore, have been regarded as one of the hallmarks of type II diabetes (T2D). Among these aggregated species, oligomers were shown to exhibit significant cytotoxicity, leading to impaired ß-cell function and reduced ß-cell mass. Monitoring of oligomer appearance during IAPP fibrillation is of particular interest. In this study, we successfully grafted an aggregation-induced emission molecule, tetraphenylethylene (TPE), at the N-terminus of IAPP. By mixing a small amount of TPE-labeled IAPP with unlabeled IAPP, we were able to detect an increase in TPE fluorescence during the nucleation phase of IAPP aggregation in vitro. It may enable real-time monitoring of IAPP oligomer formation and is further applied in the diagnosis of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Islet Amyloid Polypeptide/chemistry , Amyloid/chemistry , Insulin
11.
Int J Ophthalmol ; 16(12): 1942-1951, 2023.
Article in English | MEDLINE | ID: mdl-38111935

ABSTRACT

AIM: To investigate the effect of electroacupuncture (EA) on the mitochondria-dependent apoptotic signaling pathway in the ciliary muscle of guinea pigs with negative lens-induced myopia (LIM). METHODS: Guinea pigs were randomly divided into normal control (NC) group, LIM group, LIM+SHAM acupoint (LIM+SHAM) group, and LIM+EA group. Animals in the NC group received no intervention, while those in other three groups were covered with -6.0 diopter (D) lenses on right eyes. Meanwhile, animals in the LIM+EA group received EA at Hegu (LI4) combined with Taiyang (EX-HN5) acupoints, while those in the LIM+SHAM group were treated at sham points. After treatments for 1, 2, and 4wk, morphological changes in ciliary muscles were observed with hematoxylin and eosin (H&E) staining and nick end labeling (TUNEL), and the expression of the mitochondrial apoptotic signaling pathway-related molecules in ciliary muscles was measured by real-time quantitative polymerase chain reaction (qPCR) and Western blot. Additionally, the adenosine triphosphate (ATP) contents were also determined in ciliary muscles. RESULTS: Axial length increased significantly in the LIM and LIM+SHAM groups and decreased in the LIM+EA group. The ciliary muscle fibers were broken and destroyed in both LIM and LIM+SHAM groups, whereas those in the LIM+EA group improved significantly. TUNEL assay showed the number of apoptotic cells increased in the LIM and LIM+SHAM groups, whereas reduced in the LIM+EA group. ATP contents showed a significant decrease in the LIM and LIM+SHAM groups, whereas increased after EA treatment. Compared with the NC group, the dynamin-related protein 1 (DRP1), Caspase3, and apoptotic protease activator 1 (APAF1) levels were significantly increased in the LIM group and decreased in the LIM+EA group. CONCLUSION: The results provide evidence of EA inhibiting the development of myopia by regulating the mitochondrial apoptotic signaling pathway.

12.
Emerg Microbes Infect ; 12(2): 2272656, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37855122

ABSTRACT

Pneumococcal disease is a major threat to public health globally, impacting individuals across all age groups, particularly infants and elderly individuals. The use of current vaccines has led to unintended consequences, including serotype replacement, leading to a need for a new approach to combat pneumococcal disease. A promising solution is the development of a broad-spectrum pneumococcal vaccine. In this study, we present the development of a broad-spectrum protein-based pneumococcal vaccine that contains three pneumococcal virulence factors: rlipo-PsaA (lipidated form), rPspAΔC (truncated form), and rPspCΔC (truncated form). Intranasal immunization with rlipo-PsaA, rPspAΔC, and rPspCΔC (LAAC) resulted in significantly higher IgG titres than those induced by administration of nonlipidated rPsaA, rPspAΔC, and rPspCΔC (AAC). Furthermore, LAAC immunization induced the production of higher IgA titres in vaginal washes, feces, and sera in mice, indicating that LAAC can induce systemic mucosal immunity. In addition, administration of LAAC also induced Th1/Th17-biased immune responses and promoted opsonic phagocytosis of Streptococcus pneumoniae strains of various serotypes, implying that the immunogenicity of LAAC immunization provides a protective effect against pneumococcal infection. Importantly, challenge data showed that the LAAC-immunized mice had a reduced bacterial load not only for several serotypes of the 13-valent conjugate pneumococcal vaccine (PCV13) but also for selected non-PCV13 serotypes. Consistently, LAAC immunization increased the survival rate of mice after bacterial challenge with both PCV13 and non-PCV13 serotypes. In conclusion, our protein-based pneumococcal vaccine provides protective effects against a broad spectrum of Streptococcus pneumoniae serotypes.


Subject(s)
Pneumococcal Infections , Streptococcus pneumoniae , Humans , Infant , Female , Mice , Animals , Aged , Immunity, Mucosal , Pneumococcal Vaccines , Pneumococcal Infections/microbiology , Immunization , Antibodies, Bacterial
13.
Chemistry ; 29(58): e202301879, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37706579

ABSTRACT

The underlying biophysical principle governing the cytotoxicity of the oligomeric aggregates of ß-amyloid (Aß) peptides has long been an enigma. Here we show that the size of Aß40 oligomers can be actively controlled by incubating the peptides in reverse micelles. Our approach allowed for the first time a detailed comparison of the structures and dynamics of two Aß40 oligomers of different sizes, viz., 10 and 23 nm, by solid-state NMR. From the chemical shift data, we infer that the conformation and/or the chemical environments of the residues from K16 to K28 are different between the 10-nm and 23-nm oligomers. We find that the 10-nm oligomers are more cytotoxic, and the molecular motion of the sidechain of its charged residue K16 is more dynamic. Interestingly, the residue A21 exhibits unusually high structural rigidity. Our data raise an interesting possibility that the cytotoxicity of Aß40 oligomers could also be correlated to the motional dynamics of the sidechains.


Subject(s)
Amyloid beta-Peptides , Micelles , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/chemistry , Magnetic Resonance Spectroscopy , Peptide Fragments/toxicity , Peptide Fragments/chemistry , Amyloid/chemistry
14.
Chem Commun (Camb) ; 59(71): 10660-10663, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37581279

ABSTRACT

Piperic acid derivatives were found to affect the islet amyloid polypeptide (IAPP) aggregation process. Structure-activity relationship studies revealed that PAD-13 was an efficient molecular modulator to accelerate IAPP fibril formation by promoting primary and secondary nucleation and reducing its antimicrobial activity.


Subject(s)
Anti-Infective Agents , Islet Amyloid Polypeptide , Islet Amyloid Polypeptide/pharmacology , Islet Amyloid Polypeptide/chemistry , Amyloid/chemistry , Fatty Acids, Unsaturated , Anti-Infective Agents/pharmacology
15.
Front Neurol ; 14: 1185375, 2023.
Article in English | MEDLINE | ID: mdl-37305758

ABSTRACT

Parkinson's disease (PD) is a complex progressive neurodegenerative disease associated with aging. Its main pathological feature is the degeneration and loss of dopaminergic neurons related to the misfolding and aggregation of α-synuclein. The pathogenesis of PD has not yet been fully elucidated, and its occurrence and development process are closely related to the microbiota-gut-brain axis. Dysregulation of intestinal microbiota may promote the damage of the intestinal epithelial barrier, intestinal inflammation, and the upward diffusion of phosphorylated α-synuclein from the enteric nervous system (ENS) to the brain in susceptible individuals and further lead to gastrointestinal dysfunction, neuroinflammation, and neurodegeneration of the central nervous system (CNS) through the disordered microbiota-gut-brain axis. The present review aimed to summarize recent advancements in studies focusing on the role of the microbiota-gut-brain axis in the pathogenesis of PD, especially the mechanism of intestinal microbiome dysregulation, intestinal inflammation, and gastrointestinal dysfunction in PD. Maintaining or restoring homeostasis in the gut microenvironment by targeting the gut microbiome may provide future direction for the development of new biomarkers for early diagnosis of PD and therapeutic strategies to slow disease progression.

16.
NPJ Vaccines ; 8(1): 82, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268688

ABSTRACT

Formyl peptide receptor-like 1 inhibitor protein (FLIPr) is an immune evasion protein produced by Staphylococcus aureus, and FLIPr is a potential vaccine candidate for reducing Staphylococcus aureus virulence and biofilm formation. We produced recombinant lipidated FLIPr (rLF) to increase the immunogenicity of FLIPr and showed that rLF alone elicited potent anti-FLIPr antibody responses to overcome the FLIPr-mediated inhibition of phagocytosis. In addition, rLF has potent immunostimulatory properties. We demonstrated that rLF is an effective adjuvant. When an antigen is formulated with rLF, it can induce long-lasting antigen-specific immune responses and enhance mucosal and systemic antibody responses as well as broad-spectrum T-cell responses in mice. These findings support further exploration of rLF in the clinic as an adjuvant for various vaccine types with extra benefits to abolish FLIPr-mediated immunosuppressive effects.

17.
Protein Sci ; 32(8): e4711, 2023 08.
Article in English | MEDLINE | ID: mdl-37354016

ABSTRACT

The irreversible aggregation of proteins or peptides greatly limits their bioavailability; therefore, effective inhibition using small molecules or biocompatible materials is very difficult. Human calcitonin (hCT), a hormone polypeptide with 32 residues, is secreted by the C-cells of the thyroid gland. The biological function of this hormone is to regulate calcium and phosphate concentrations in the blood via several different pathways. One of these is to inhibit the activity of osteoclasts; thus, calcitonin could be used to treat osteoporosis and Paget's disease of the bone. However, hCT is prone to aggregation in aqueous solution and forms amyloid fibrils. Salmon and eel calcitonin are currently used as clinical substitutes for hCT. In a previous study, we found that the replacement of two residues at positions 12 and 17 of hCT with amino acids that appear in the salmon sequence can greatly suppress peptide aggregation. The double mutations of hCT (DM hCT) also act as good inhibitors by disrupting wild-type hCT fibrillization, although the inhibition mechanism is not clear. More importantly, we demonstrated that DM hCT is biologically active in interacting with the calcitonin receptor. To further understand the inhibitory effect of DM hCT on hCT fibrillization, we created four relevant peptide fragments based on the DM hCT sequence. Our examination revealed that the formation of a helix of DM hCT was possibly a key component contributing to its inhibitory effect. This finding could help in the development of peptide-based inhibitors and in understanding the aggregation mechanism of hCT.


Subject(s)
Calcitonin , Peptide Fragments , Humans , Calcitonin/genetics , Calcitonin/pharmacology , Calcitonin/chemistry , Mutation , Calcium/metabolism
18.
Prostaglandins Other Lipid Mediat ; 167: 106740, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37119935

ABSTRACT

Epoxyeicosatrienoic acids (EETs), which are synthesized from arachidonic acid by cytochrome P450 epoxygenases, function primarily as autocrine and paracrine effectors in the cardiovascular system. So far, most research has focused on the vasodilatory, anti-inflammatory, anti-apoptotic and mitogenic properties of EETs in the systemic circulation. However, whether EETs could suppress tissue factor (TF) expression and prevent thrombus formation remains unknown. Here we utilized in vivo and in vitro models to investigate the effects and underlying mechanisms of exogenously EETs on LPS induced TF expression and inferior vein cava ligation induced thrombosis. We observed that the thrombus formation rate and the size of the thrombus were greatly reduced in 11,12-EET treated mice,accompanied by decreased TF and inflammatory cytokines expression. Further in vitro studies showed that by enhancing p38 MAPK activation and subsequent tristetraprolin (TTP) phosphorylation, LPS strengthened the stability of TF mRNA and induced increased TF expression. However, by strengthening PI3K-dependent Akt phosphorylation, which acted as a negative regulator of p38-TTP signaling pathway,11,12-EET reduced LPS-induced TF expression in monocytes. In addition, 11,12-EET inhibited LPS-induced NF-κB nuclear translocation by activating the PI3K/Akt pathway. Further study indicated that the inhibitory effect of 11,12-EET on TF expression was mediated by antagonizing LPS-induced activation of thromboxane prostanoid receptor. In conclusion, our study demonstrated that 11,12-EET prevented thrombosis by reducing TF expression and targeting the CYP2J2 epoxygenase pathway may represent a novel approach to mitigate thrombosis related diseases.


Subject(s)
Proto-Oncogene Proteins c-akt , Thrombosis , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Lipopolysaccharides/pharmacology , Thromboplastin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Cytochrome P-450 Enzyme System/metabolism , Signal Transduction , Cytochrome P-450 CYP2J2 , 8,11,14-Eicosatrienoic Acid/metabolism , Thrombosis/drug therapy , RNA Stability
19.
Cancer Sci ; 114(5): 1972-1985, 2023 May.
Article in English | MEDLINE | ID: mdl-36692143

ABSTRACT

The Brother of Regulator of Imprinted Sites (BORIS, gene symbol CTCFL) has previously been shown to promote colorectal cancer cell proliferation, inhibit cancer cell apoptosis, and resist chemotherapy. However, it is unknown whether Boris plays a role in the progression of in situ colorectal cancer. Here Boris knockout (KO) mice were constructed. The function loss of the cloned Boris mutation that was retained in KO mice was verified by testing its activities in colorectal cell lines compared with the Boris wild-type gene. Boris knockout reduced the incidence and severity of azoxymethane/dextran sulfate-sodium (AOM/DSS)-induced colon cancer. The importance of Boris is emphasized in the progression of in situ colorectal cancer. Boris knockout significantly promoted the phosphorylation of γH2AX and the DNA damage in colorectal cancer tissues and suppressed Wnt and MAPK pathways that are responsible for the callback of DNA damage repair. This indicates the strong inhibition of colorectal cancer in Boris KO mice. By considering that the DSS-promoted inflammation contributes to tumorigenesis, Boris KO mice were also studied in DSS-induced colitis. Our data showed that Boris knockout alleviated DSS-induced colitis and that Boris knockdown inhibited the NF-κB signaling pathway in RAW264.7 cells. Therefore Boris knockout eliminates colorectal cancer generation by inhibiting DNA damage repair in cancer cells and relieving inflammation in macrophages. Our findings demonstrate the importance of Boris in the development of in situ colorectal cancer and provide evidence for the feasibility of colorectal cancer therapy on Boris.


Subject(s)
Colitis , Colorectal Neoplasms , Animals , Male , Mice , Azoxymethane/toxicity , Colitis/chemically induced , Colitis/genetics , Colitis/complications , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Dextran Sulfate/toxicity , Dextran Sulfate/therapeutic use , Disease Models, Animal , DNA Damage/genetics , Inflammation/metabolism , Mice, Inbred C57BL , Mice, Knockout
20.
Talanta ; 254: 124130, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36462286

ABSTRACT

The deposits of human islet amyloid polypeptide (IAPP), also called amylin, in the pancreas have been postulated to be a factor of pancreatic ß-cell dysfunction and is one of the common pathological hallmarks of type II diabetes mellitus (T2DM). Therefore, it is imperative to gain an in-depth understanding of the formation of these aggregates. In this study, we demonstrate a rationally-designed strategy of an environmentally sensitive near-infrared (NIR) molecular rotor utilizing thioflavin T (ThT) as a scaffold for IAPP deposits. We extended the π delocalized system not only to improve the viscosity sensitivity but also to prolong the emission wavelength to the NIR region. A naphthalene moiety was also introduced to adjust the sensitivity of our designed probes to differentiate the binding microenvironment polarity of different targeted proteins. As a result, a novel NIR fluorogenic probe toward IAPP aggregates, namely AmySP-4-Nap-Ene, was first developed. When attached to different protein aggregates, this probe exhibited distinct fluorescence emission profiles. In a comparison with ThT, the fluorescence emission of non-ionic AmySP-4-Nap-Ene exhibits a significant difference between the presence of non-fibrillar and fibrillar IAPP and displays a higher binding affinity toward IAPP fibrils. Further, the AmySP-4-Nap-Ene can be utilized to monitor IAPP accumulating process and image fibrils both in vitro and in living cells.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Humans , Islet Amyloid Polypeptide/chemistry , Diabetes Mellitus, Type 2/metabolism , Fluorescent Dyes/chemistry , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Amyloid/chemistry , Amyloid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...