Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Gut ; 72(8): 1510-1522, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36759154

ABSTRACT

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant desmoplastic stroma composed of cancer-associated fibroblasts (CAF) and interspersed immune cells. A non-canonical CD8+ T-cell subpopulation producing IL-17A (Tc17) promotes autoimmunity and has been identified in tumours. Here, we evaluated the Tc17 role in PDAC. DESIGN: Infiltration of Tc17 cells in PDAC tissue was correlated with patient overall survival and tumour stage. Wild-type (WT) or Il17ra-/- quiescent pancreatic stellate cells (qPSC) were exposed to conditional media obtained from Tc17 cells (Tc17-CM); moreover, co-culture of Tc17-CM-induced inflammatory (i)CAF (Tc17-iCAF) with tumour cells was performed. IL-17A/F-, IL-17RA-, RAG1-deficient and Foxn1nu/nu mice were used to study the Tc17 role in subcutaneous and orthotopic PDAC mouse models. RESULTS: Increased abundance of Tc17 cells highly correlated with reduced survival and advanced tumour stage in PDAC. Tc17-CM induced iCAF differentiation as assessed by the expression of iCAF-associated genes via synergism of IL-17A and TNF. Accordingly, IL-17RA controlled the responsiveness of qPSC to Tc17-CM. Pancreatic tumour cells co-cultured with Tc17-iCAF displayed enhanced proliferation and increased expression of genes implicated in proliferation, metabolism and protection from apoptosis. Tc17-iCAF accelerated growth of mouse and human tumours in Rag1-/- and Foxn1nu/nu mice, respectively. Finally, Il17ra-expressed by fibroblasts was required for Tc17-driven tumour growth in vivo. CONCLUSIONS: We identified Tc17 as a novel protumourigenic CD8+ T-cell subtype in PDAC, which accelerated tumour growth via IL-17RA-dependent stroma modification. We described a crosstalk between three cell types, Tc17, fibroblasts and tumour cells, promoting PDAC progression, which resulted in poor prognosis for patients.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , CD8-Positive T-Lymphocytes , Cancer-Associated Fibroblasts/metabolism , Interleukin-17/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Homeodomain Proteins , Pancreatic Neoplasms
2.
JCI Insight ; 7(16)2022 08 22.
Article in English | MEDLINE | ID: mdl-35993361

ABSTRACT

Metastatic pancreatic cancer (PDAC) has a poor clinical outcome with a 5-year survival rate below 3%. Recent transcriptome profiling of PDAC biopsies has identified 2 clinically distinct subtypes - the "basal-like" (BL) subtype with poor prognosis and therapy resistance compared with the less aggressive and drug-susceptible "classical" (CLA) subtype. However, the mechanistic events and environmental factors that promote the BL subtype identity are not very clear. Using preclinical models, patient-derived xenografts, and FACS-sorted PDAC patient biopsies, we report here that the axon guidance receptor, roundabout guidance receptor 3 (ROBO3), promotes the BL metastatic program via a potentially unique AXL/IL-6/phosphorylated STAT3 (p-STAT3) regulatory axis. RNA-Seq identified a ROBO3-mediated BL-specific gene program, while tyrosine kinase profiling revealed AXL as the key mediator of the p-STAT3 activation. CRISPR/dCas9-based ROBO3 silencing disrupted the AXL/p-STAT3 signaling axis, thereby halting metastasis and enhancing therapy sensitivity. Transcriptome analysis of resected patient tumors revealed that AXLhi neoplastic cells associated with the inflammatory stromal program. Combining AXL inhibitor and chemotherapy substantially restored a CLA phenotypic state and reduced disease aggressiveness. Thus, we conclude that a ROBO3-driven hierarchical network determines the inflammatory and prometastatic programs in a specific PDAC subtype.


Subject(s)
Axon Guidance , Pancreatic Neoplasms , Receptors, Cell Surface , Axon Guidance/genetics , Axon Guidance/physiology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Axl Receptor Tyrosine Kinase
3.
Nat Cancer ; 2(11): 1185-1203, 2021 11.
Article in English | MEDLINE | ID: mdl-35122059

ABSTRACT

Large-scale genomic profiling of pancreatic cancer (PDAC) has revealed two distinct subtypes: 'classical' and 'basal-like'. Their variable coexistence within the stromal immune microenvironment is linked to differential prognosis; however, the extent to which these neoplastic subtypes shape the stromal immune landscape and impact clinical outcome remains unclear. By combining preclinical models, patient-derived xenografts, as well as FACS-sorted PDAC patient biopsies, we show that the basal-like neoplastic state is sustained via BRD4-mediated cJUN/AP1 expression, which induces CCL2 to recruit tumor necrosis factor (TNF)-α-secreting macrophages. TNF-α+ macrophages force classical neoplastic cells into an aggressive phenotypic state via lineage reprogramming. Integration of ATAC-, ChIP- and RNA-seq data revealed distinct JUNB/AP1 (classical) and cJUN/AP1 (basal-like)-driven regulation of PDAC subtype identity. Pharmacological inhibition of BRD4 led to suppression of the BRD4-cJUN-CCL2-TNF-α axis, restoration of classical subtype identity and a favorable prognosis. Hence, patient-tailored therapy for a cJUNhigh/TNF-αhigh subtype is paramount in overcoming highly inflamed and aggressive PDAC states.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/genetics , Cell Cycle Proteins/genetics , Gene Expression Regulation, Neoplastic , Humans , Macrophages/metabolism , Nuclear Proteins/genetics , Pancreatic Neoplasms/genetics , Prognosis , Transcription Factors/genetics , Tumor Microenvironment/genetics , Tumor Necrosis Factor-alpha/genetics , Pancreatic Neoplasms
4.
Neural Comput ; 32(6): 1144-1167, 2020 06.
Article in English | MEDLINE | ID: mdl-32343646

ABSTRACT

Large-scale fluorescence calcium imaging methods have become widely adopted for studies of long-term hippocampal and cortical neuronal dynamics. Pyramidal neurons of the rodent hippocampus show spatial tuning in freely foraging or head-fixed navigation tasks. Development of efficient neural decoding methods for reconstructing the animal's position in real or virtual environments can provide a fast readout of spatial representations in closed-loop neuroscience experiments. Here, we develop an efficient strategy to extract features from fluorescence calcium imaging traces and further decode the animal's position. We validate our spike inference-free decoding methods in multiple in vivo calcium imaging recordings of the mouse hippocampus based on both supervised and unsupervised decoding analyses. We systematically investigate the decoding performance of our proposed methods with respect to the number of neurons, imaging frame rate, and signal-to-noise ratio. Our proposed supervised decoding analysis is ultrafast and robust, and thereby appealing for real-time position decoding applications based on calcium imaging.


Subject(s)
Action Potentials/physiology , Calcium Signaling/physiology , Hippocampus/physiology , Optical Imaging/methods , Supervised Machine Learning , Unsupervised Machine Learning , Animals , Female , Hippocampus/chemistry , Male , Mice , Mice, Inbred C57BL
5.
Virol J ; 12: 114, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26239432

ABSTRACT

The parvoviruses are widely spread in many species and are among the smallest DNA animal viruses. The parvovirus is composed of a single strand molecule of DNA wrapped into an icosahedral capsid. In a viral infection, the massy capsid participates in the entire viral infection process, which is summarized in this review. The capsid protein VP1 is primarily responsible for the infectivity of the virus, and the nuclear localization signal (NLS) of the VP1 serves as a guide to assist the viral genome in locating the nucleus. The dominant protein VP2 provides an "anti-receptor", which interacts with the cellular receptor and leads to the further internalization of virus, and, the N-terminal of VP2 also cooperates with the VP1 to prompt the process of nucleus translocation. Additionally, a cleavage protein VP3 is a part of the capsid, which exists only in several members of the parvovirus family; however, the function of this cleavage protein remains to be fully determined. Parvoviruses can suffer from the extreme environmental conditions such as low pH, or even escape from the recognition of pattern recognition receptors (PRRs), due to the protection of the stable capsid, which is thought to be an immune escape mechanism. The applications of the capsid proteins to the screening and the treatment of diseases are also discussed. The processes of viral infection should be noted, because understanding the virus-host interactions will contribute to the development of therapeutic vaccines.


Subject(s)
Capsid Proteins/metabolism , Parvoviridae Infections/virology , Parvoviridae/metabolism , Animals , Capsid/metabolism , Capsid Proteins/genetics , Cell Nucleus/metabolism , Genome, Viral , Humans , Open Reading Frames , Parvoviridae/genetics , Protein Transport
6.
Bing Du Xue Bao ; 31(6): 679-84, 2015 Nov.
Article in Chinese | MEDLINE | ID: mdl-26951015

ABSTRACT

Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.


Subject(s)
Apoptosis , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvovirus/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Humans , Parvoviridae Infections/physiopathology , Parvovirus/genetics , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...