Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(9): 104012, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38986359

ABSTRACT

Slightly acidic electrolyzed water (SAEW) is a safe and effective disinfectant, but its sterilizing efficiency is compromised by organic matter on the egg surface. Electrolyzed reduced water (ERW) is a harmless cleaner with a decontamination effect on a variety of surfaces and can be used to remove organic matter. This study assesses the effectiveness of a combination of ERW and SAEW in eliminating Salmonella and manure mixture from egg surfaces, as well as its impact on egg quality during storage. The results show that ERW (74.14%) was more effective than deionized water (DW, 64.69%) and SAEW (70.20%) (P < 0.05) in removing manure from egg surfaces. The damage to the cuticle of eggshell treated with ERW for 28 s was similar to that of DW (P > 0.05) and less than that of SAEW (P < 0.05). Spraying ERW for 10 s followed by SAEW for 18 s (ERW + SAEW) completely removed Salmonella from the egg surface, with no bacteria detected in the residual wash solution. Additionally, ERW + SAEW demonstrated superior preservation of egg quality during storage at 25℃ than the control and ERW single treatment (P < 0.05). Moreover, ERW + SAEW resulted in less weight loss compared to SAEW single treatment (P < 0.05). In conclusion, the sequential use of ERW and SAEW appears to be a promising approach for sterilizing eggs. It not only removes organic matter and Salmonella from the egg surface but also improves the preservation quality of the egg at 25 ℃.

2.
Colloids Surf B Biointerfaces ; 188: 110769, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31918157

ABSTRACT

Polysulfone (PSf) membrane is widely employed in blood purification fields, but the blood compatibility of PSf membrane is not adequate. To improve the hemocompatibility of PSf membrane, 4-(chloromethyl)benzoic acid (CMBA) and sulfonated hydroxypropyl chitosan (SHPCS) were grafted onto PSf membrane surface. In our strategy, CMBA was firstly grafted on the PSf membrane surface through the Friedel-Crafts alkylation reaction, and the product was named BAPSf membrane. Then, SHPCS was grafted onto the BAPSf membrane surface by esterification, and the product was named SHPCS-BAPSf membrane. The effects of temperature and reaction time on the productivity of BAPSf and the grafting density of carboxyl and the effects of reaction time on the grafting density of SHPCS grafted onto the BAPSf membrane surface were studied. The SHPCS-BAPSf membranes are investigated by ATR-FTIR, XPS, contact angle measurements and evaluated by blood compatibility in vitro. The results reveal that the hydrophilicity of SHPCS-BAPSf membranes were grealy improved and the evaluation of protein adsorption, hemolysis test, platelet adhesion plasma recalcification time(PRT), activated partial thromboplastin time(APTT), prothrombin time(PT) and thrombin time(TT) confirmed that the SHPCS-BAPSf membranes have remarkable blood compatibility.


Subject(s)
Benzoic Acid/chemistry , Biocompatible Materials/chemistry , Chitosan/chemistry , Polymers/chemistry , Sulfones/chemistry , Adsorption , Animals , Blood Coagulation Tests , Blood Platelets/chemistry , Cattle , Humans , Hydrophobic and Hydrophilic Interactions , Materials Testing , Particle Size , Platelet Adhesiveness , Serum Albumin, Bovine/chemistry , Surface Properties
3.
RSC Adv ; 9(11): 6254-6266, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-35517280

ABSTRACT

In this study, acrylic acid (AA) and sulfonated hydroxypropyl chitosan (SHPCS) were covalently grafted on the PSf membrane surface to improve its hemocompatibility. First, the modified AA-PSf membrane was obtained through the Friedel-Craft reaction between acrylic acid and the PSf membrane surface. Then, the modified SHPCS-AA-PSf membrane was prepared by grafting SHPCS onto the AA-PSf membrane surface via the dehydration acylation of the carboxyl group of the AA-PSf membrane with the amino group of SHPCS. ATR-FTIR and XPS measurements confirmed that the -COOH group and SHPCS were successfully grafted onto the surface of the PSf membrane. The modified PSf membranes showed suppressed platelet adhesion and lower protein adsorption (161 µg cm-2) compared with the pristine PSf membrane (341 µg cm-2). Hemocompatibility testing showed that modified membrane materials had a prolonged clotting time, plasma recalcification time (PRT), activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT). All of these results indicated that the surface modification of the PSf membrane with acrylic acid and SHPCS had good hemocompatibility and anticoagulant property.

SELECTION OF CITATIONS
SEARCH DETAIL
...