Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 725
Filter
1.
J Agric Food Chem ; 72(23): 13297-13307, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38830127

ABSTRACT

2-(2-Phenylethyl)chromones (PECs) are the primary constituents responsible for the promising pharmacological activities and unique fragrance of agarwood. However, the O-methyltransferases (OMTs) involved in the formation of diverse methylated PECs have not been reported. In this study, we identified one Mg2+-dependent caffeoyl-CoA-OMT subfamily enzyme (AsOMT1) and three caffeic acid-OMT subfamily enzymes (AsOMT2-4) from NaCl-treated Aquilaria sinensis calli. AsOMT1 not only converts caffeoyl-CoA to feruloyl-CoA but also performs nonregioselective methylation at either the 6-OH or 7-OH position of 6,7-dihydroxy-PEC. On the other hand, AsOMT2-4 preferentially utilizes PECs as substrates to produce structurally diverse methylated PECs. Additionally, AsOMT2-4 also accepts nonPEC-type substrates such as caffeic acid and apigenin to generate methylated products. Protein structure prediction and site-directed mutagenesis revealed that residues of L313 and I318 in AsOMT3, as well as S292 and F313 in AsOMT4 determine the distinct regioselectivity of these two OMTs toward apigenin. These findings provide important biochemical evidence of the remarkable structural diversity of PECs in agarwood.


Subject(s)
Methyltransferases , Plant Proteins , Thymelaeaceae , Methyltransferases/genetics , Methyltransferases/chemistry , Methyltransferases/metabolism , Thymelaeaceae/enzymology , Thymelaeaceae/chemistry , Thymelaeaceae/genetics , Plant Proteins/genetics , Plant Proteins/chemistry , Plant Proteins/metabolism , Wood/chemistry , Substrate Specificity , Caffeic Acids/chemistry , Caffeic Acids/metabolism , Methylation , Flavonoids
2.
Phytochemistry ; 224: 114140, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750709

ABSTRACT

Eight previously undescribed cevanine-type steroidal alkaloids, cirrhosinones I-N and cirrhosinols A-B, along with five known analogs, were isolated from the bulbs of Fritillaria cirrhosa D. Don. Their structures were elucidated on the basis of comprehensive analysis of HRESIMS, 1D and 2D NMR spectroscopic data, and single-crystal X-ray diffraction analyses. All compounds revealed weak NO inhibitory activities in the LPS-stimulated NR8383 cells at the concentration of 20 µM, with inhibition ratios ranging from 5.1% to 14.3%.

4.
Phytomedicine ; 130: 155668, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38776739

ABSTRACT

BACKGROUND: Baoyuan decoction (BYD) has been widely utilized as a traditional prescription for the treatment of various conditions such as coronary heart disease, aplastic anemia, and chronic renal failure. However, its potential efficacy in improving atherosclerosis has not yet been investigated. PURPOSE: Our research aimed to assess the potential of BYD as an inhibitor of atherosclerosis and uncover the underlying mechanism by which it acts on foam cell formation. STUDY DESIGN AND METHODS: High-fat diet-induced ApoE-/- mice were employed to explore the effect of BYD on atherosclerosis. The differential metabolites in feces were identified and analyzed by LC-Qtrap-MS. In addition, we utilized pharmacological inhibition of BYD on foam cell formation induced by oxLDL in THP-1 cells to elucidate the underlying mechanisms specifically in macrophages. RESULTS: The atherosclerotic plaque burden in the aortic sinus of ApoE-/- mice was notably reduced with BYD treatment, despite no significant alterations in plasma lipids. Metabolomic analysis revealed that BYD suppressed the increased levels of peroxidized fatty acids, specifically 9/13-hydroxyoctadecadienoic acid (9/13-HODE), in the feces of mice. As a prominent peroxidized fatty acid found in oxLDL, we confirmed that 9/13-HODE induced the overexpression of CD36 in THP-1 macrophages by upregulating PPARγ. In subsequent experiments, the decreased levels of CD36 triggered by oxLDL were observed after BYD treatment. This decrease occurred through the regulation of the Src/MMK4/JNK pathway, resulting in the suppression of lipid deposition in THP-1 macrophages. CONCLUSIONS: These results illustrate that BYD exhibits potential anti-atherosclerotic effects by inhibiting CD36 expression to prevent foam cell formation.

5.
Article in English | MEDLINE | ID: mdl-38733887

ABSTRACT

Cardiac hypertrophy (CH) is one of the stages in the occurrence and development of severe cardiovascular diseases, and exploring its biomarkers is beneficial for delaying the progression of severe cardiovascular diseases. In this research, we established a comprehensive and highly efficient pseudotargeted metabolomics method, which demonstrated a superior capacity to identify differential metabolites when compared to traditionaluntargeted metabolomics. The intra/inter-day precision and reproducibility results proved the method is reliable and precise. The established method was then applied to seek the potential differentiated metabolic biomarkers of cardiac hypertrophy (CH) rats, and oxylipins, phosphorylcholine (PC), lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE), Krebs cycle intermediates, carnitines, amino acids, and bile acids were disclosed to be the possible differentiate components. Their metabolic pathway analysis revealed that the potential metabolic alterations in CH rats were mainly associated with phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arachidonic acid metabolism, citrate cycle, glyoxylate and dicarboxylate metabolism, and tyrosine metabolism. In sum, this research provided a comprehensiveand reliable LC-MS/MS MRM platform for pseudo-targeted metabolomics investigation of disease condition, and some interesting potential biomarkers were disclosed for CH, which merit further exploration in the future.


Subject(s)
Biomarkers , Cardiomegaly , Metabolome , Metabolomics , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Animals , Metabolomics/methods , Biomarkers/metabolism , Biomarkers/analysis , Rats , Male , Cardiomegaly/metabolism , Reproducibility of Results , Tandem Mass Spectrometry/methods , Metabolome/physiology , Chromatography, Liquid/methods
6.
Acta Pharm Sin B ; 14(5): 2333-2348, 2024 May.
Article in English | MEDLINE | ID: mdl-38799633

ABSTRACT

Enzymatic malonylation of natural glycosides provides a promising alternative method for drug-like malonylated glycosides supply. However, the catalytic potential and structural basis of plant malonyltransferase are far from being fully elucidated. This work identified a new malonyltransferase CtMaT1 from Cistanche tubulosa. It displayed unprecedented mono- and/or di-malonylation activity toward diverse glucosides with different aglycons. A "one-pot" system by CtMaT1 and a malonyl-CoA synthetase was established to biosynthesize nine new malonylated glucosides. Structural investigations revealed that CtMaT1 possesses an adequately spacious acyl-acceptor pocket capable of accommodating diverse glucosides. Additionally, it recognizes malonyl-CoA through strong electrotactic and hydrogen interactions. QM/MM calculation revealed the H167-mediated SN2 reaction mechanism of CtMaT1, while dynamic simulations detected the formation of stable hydrogen bonds between the glucose-6-OH group and H167, resulting in its high malonylation regiospecificity. Calculated energy profiles of two isomeric glycosides highlighted lower reaction energy barriers towards glucoside substrates, emphasizing CtMaT1's preference for glucosides. Furthermore, a mutant CtMaT1H36A with notably increased di-malonylation activity was obtained. The underlying molecular mechanism was illuminated through MM/GBSA binding free energy calculation. This study significantly advances the understanding of plant acyltransferases from both functional and protein structural perspectives, while also providing a versatile tool for enzymatic malonylation applications in pharmacology.

8.
J Ethnopharmacol ; 330: 118148, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38583734

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese herb Panax notoginseng (PN) tonifies blood, and its main active ingredient is saponin. PN is processed by different methods, resulting in different compositions and effects. AIM OF THE STUDY: To investigate changes in the microstructure and composition of fresh PN processed by different techniques and the anti-anemia effects on tumor-bearing BALB/c mice after chemotherapy with cyclophosphamide (CTX). MATERIALS AND METHODS: Fresh PN was processed by hot-air drying (raw PN, RPN), steamed at 120 °C for 5 h (steamed PN, SPN), or fried at 130 °C, 160 °C, or 200 °C for 8 min (fried PN, FPN1, FPN2, or FPN3, respectively); then, the microstructures were compared with 3D optical microscopy, quasi-targeted metabolites were detected by liquid chromatography tandem mass spectrometry (LC‒MS/MS), and saponins were detected by high-performance liquid chromatography (HPLC). An anemic mouse model was established by subcutaneous H22 cell injection and treatment with CTX. The antianemia effects of PN after processing via three methods were investigated by measuring peripheral blood parameters, performing HE staining and measuring cell proliferation via immunofluorescence. RESULTS: 3D optical profiling revealed that the surface roughness of the SPN and FPN was greater than that of the other materials. Quasi-targeted metabolomics revealed that SPN and FPN had more differentially abundant metabolites whose abundance increased, while SPN had greater amounts of terpenoids and flavones. Analysis of the composition and content of the targeted saponins revealed that the contents of rare saponins (ginsenoside Rh1, 20(S)-Rg3, 20(R)-Rg3, Rh4, Rk3, Rg5) were greater in the SPN. In animal experiments, the RBC, WBC, HGB and HCT levels in peripheral blood were increased by SPN and FPN. HE staining and immunofluorescence showed that H-SPN and M-FPN promoted bone marrow and spleen cell proliferation. CONCLUSION: The microstructure and components of fresh PN differed after processing via different methods. SPN and FPN ameliorated CTX-induced anemia in mice, but the effects of PN processed by these two methods did not differ.


Subject(s)
Anemia , Cyclophosphamide , Mice, Inbred BALB C , Panax notoginseng , Saponins , Animals , Cyclophosphamide/toxicity , Panax notoginseng/chemistry , Mice , Saponins/pharmacology , Anemia/chemically induced , Anemia/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Cell Line, Tumor , Female
9.
Eur J Pharmacol ; 972: 176551, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38570082

ABSTRACT

Fibroblast-like synoviocytes (FLS) play an important role in rheumatoid arthritis (RA)-related swelling and bone damage. Therefore, novel targets for RA therapy in FLS are urgently discovered for improving pathologic phenomenon, especially joint damage and dyskinesia. Here, we suggested that pyruvate kinase M2 (PKM2) in FLS represented a pharmacological target for RA treatment by antimalarial drug artemisinin (ART). We demonstrated that ART selectively inhibited human RA-FLS and rat collagen-induced arthritis (CIA)-FLS proliferation and migration without observed toxic effects. In particular, the identification of targets revealed that PKM2 played a crucial role as a primary regulator of the cell cycle, leading to the heightened proliferation of RA-FLS. ART exhibited a direct interaction with PKM2, resulting in an allosteric modulation that enhances the lactylation modification of PKM2. This interaction further promoted the binding of p300, ultimately preventing the nuclear translocation of PKM2 and inducing cell cycle arrest at the S phase. In vivo, ART obviously suppressed RA-mediated synovial hyperplasia, bone damage and inflammatory response to further improve motor behavior in CIA-rats. Taken together, these findings indicate that directing interventions towards PKM2 in FLS could offer a hopeful avenue for pharmaceutical treatments of RA through the regulation of cell cycle via PKM2 lactylation.


Subject(s)
Arthritis, Rheumatoid , Cell Proliferation , Synoviocytes , Synoviocytes/drug effects , Synoviocytes/metabolism , Synoviocytes/pathology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Animals , Cell Proliferation/drug effects , Humans , Rats , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Pyruvate Kinase/metabolism , Thyroid Hormone-Binding Proteins , Male , Thyroid Hormones/metabolism , Arthritis, Experimental/pathology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Cell Movement/drug effects , Molecular Targeted Therapy , Membrane Proteins/metabolism , Carrier Proteins/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry
11.
Anal Chim Acta ; 1305: 342542, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38677836

ABSTRACT

Target discovery of natural products is a key step in the development of new drugs, and it is also a difficult speed-limiting step. In this study, a traditional Chinese medicine microspheres (TCM-MPs) target fishing strategy was developed to discover the key drug targets from complex system. The microspheres are composed of Fe3O4 magnetic nanolayer, oleic acid modified layer, the photoaffinity group (4- [3-(Trifluoromethyl)-3H-diazirin-3-yl] benzoic acid, TAD) layer and active small molecule layer from inside to outside. TAD produces highly reactive carbene under ultraviolet light, which can realize the self-assembly and fixation of drug active small molecules with non-selective properties. Here, taking Shenqi Jiangtang Granules (SJG) as an example, the constructed TCM-MPs was used to fish the related proteins of human glomerular mesangial cells (HMCs) lysate. 28 differential proteins were screened. According to the target analysis based on bioinformatics, GNAS was selected as the key target, which participated in insulin secretion and cAMP signaling pathway. To further verify the interaction effect of GNAS and small molecules, a reverse fishing technique was established based on bio-layer interferometry (BLI) coupled with UHPLC-Q/TOF-MS/MS. The results displayed that 26 small molecules may potentially interact with GNAS, and 7 of them were found to have strong binding activity. In vitro experiments for HMCs have shown that 7 active compounds can significantly activate the cAMP pathway by binding to GNAS. The developed TCM-MPs target fishing strategy combined with BLI reverse fishing technology to screen out key proteins that directly interact with active ingredients from complex target protein systems is significant for the discovery of drug targets for complex systems of TCM.


Subject(s)
Medicine, Chinese Traditional , Microspheres , Humans , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drug Discovery , Interferometry/methods
12.
Inorg Chem ; 63(15): 6854-6870, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38564370

ABSTRACT

The issue of catalyst deactivation due to sintering has gained significant attention alongside the rapid advancement of thermal catalysts. In this work, a simple Sr modification strategy was applied to achieve highly active Co3O4-based nanocatalyst for catalytic combustion of hydrocarbons with excellent antisintering feature. With the Co1Sr0.3 catalyst achieving a 90% propane conversion temperature (T90) of only 289 °C at a w8 hly space velocity of 60,000 mL·g-1·h-1, 24 °C lower than that of pure Co3O4. Moreover, the sintering resistance of Co3O4 catalysts was greatly improved by SrCO3 modification, and the T90 over Co1Sr0.3 just increased from 289 to 337 °C after thermal aging at 750 °C for 100 h, while that over pure Co3O4 catalysts increased from 313 to 412 °C. Through strontium modification, a certain amount of SrCO3 was introduced on the Co3O4 catalyst, which can serve as a physical barrier during the thermal aging process and further formation of Sr-Co perovskite nanocrystals, thus preventing the aggregation growth of Co3O4 nanocrystals and generating new active SrCoO2.52-Co3O4 heterointerface. In addition, propane durability tests of the Co1Sr0.3 catalysts showed strong water vapor resistance and stability, as well as excellent low-temperature activity and resistance to sintering in the oxidation reactions of other typical hydrocarbons such as toluene and propylene. This study provides a general strategy for achieving thermal catalysts by perfectly combining both highly low-temperature activity and sintering resistance, which will have great significance in practical applications for replacing precious materials with comparative features.

13.
J Med Chem ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38511243

ABSTRACT

There is an urgent requirement to acquire a comprehensive comprehension of novel therapeutic targets for prostate cancer to facilitate the development of medications with innovative mechanisms. In this study, we identified gambogic acid (GBA) as a specific pyroptosis inducer in prostatic cancer cells. By using a thermal proteome profiling (TPP) strategy, we revealed that GBA induces pyroptosis by directly targeting the canopy FGF signaling regulator (CNPY3), which was previously considered "undruggable". Moreover, through the utilization of the APEX2-based proximity labeling method, we found that GBA recruited delactatease SIRT1, resulting in the elimination of lysine lactylation (Kla) on CNPY3. Of note, SIRT1-mediated delactylation influenced the cellular localization of CNPY3 to promote lysosome rupture for triggering pyroptosis. Taken together, our study identified CNPY3 as a distinctive cellular target for pyroptosis induction and its potential application in prostate cancer therapy.

14.
J Chromatogr A ; 1720: 464773, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38432106

ABSTRACT

Although the co-occurrences of isomeric chalcones and dihydroflavones widely appear in medicinal plants, the differentiation of such isomerism seldom succeeds using MS/MS, attributing to totally identical MS/MS spectra. Here, efforts were paid to pursue an eligible tool allowing to address the technical challenge. Being inspired by that one more proton signal is observed in 1H NMR spectrum of isoliquiritigenin than liquiritigenin when employing DMSO­d6 as solvent, hydrogen-deuterium exchange (HDX)-MS/MS was evaluated towards differentiating isomeric chalcones and dihydroflavones through replacing H2O with D2O to prepare the mobile phase. As a result, differences were observed for either MS1 or MS2 spectrum when comparing two pairs of isomers, such as liquiritigenin vs. isoliquiritigenin and liquiritin vs. isoliquiritin, because the isomeric precursor and fragment ion species owned different amounts of hydroxyl protons and those reactive protons could be partially or completely substituted by deuterium protons at the exposure in D2O to result in n × 1.006 mass increments. Moreover, utmost four hydrogen/deuterium exchanges occurred for a single glucosyl moiety. Thereafter, HDX-MS/MS was applied to characterize the flavonoids of Snow chrysanthemum, a precious edible herbal medicine that is rich in isomeric chalcones and dihydroflavones. Through paying special attention to the deuterium labeling styles of (de)protonated molecules as well as those featured fragment ions, five pairs of isomeric chalcones and dihydroflavones were confirmatively differentiated, in addition to that 28 flavonoids were structurally annotated by applying those well-defined mass fragmentation rules. Hence, this study offered an in-depth insight towards the flavonoids-focused characterization of Snow chrysanthemum, and more importantly, HDX-MS/MS is a superior tool to differentiate, but not limited to, isomeric chalcones and dihydroflavones.


Subject(s)
Chalcones , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Hydrogen/chemistry , Deuterium , Flavonoids , Isomerism , Protons , Deuterium Exchange Measurement/methods , Chromatography, Liquid , Ions
16.
Chin Med ; 19(1): 42, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38444022

ABSTRACT

BACKGROUND: Cayratia albifolia C.L.Li (CAC), commonly known as "Jiao-Mei-Gu" in China, has been extensively utilized by the Dong minority for several millennia to effectively alleviate symptoms associated with autoimmune diseases. CAC extract is believed to possess significant anti-inflammatory properties within the context of Dong medicine. However, an in-depth understanding of the specific pharmaceutical effects and underlying mechanisms through which CAC extract acts against rheumatoid arthritis (RA) has yet to be established. METHODS: Twenty-four Sprague-Dawley rats were divided into four groups, with six rats in each group. To induce the collagen-induced arthritis (CIA) model, the rats underwent a process of double immunization with collagen and adjuvant. CAC extract (100 mg/kg) was orally administered to rats. The anti-RA effects were evaluated in CIA rats by arthritis score, hind paw volume and histopathology analysis. Pull-down assay was conducted to identify the potential targets of CAC extract from RAW264.7 macrophage lysates. Moreover, mechanism studies of CAC extract were performed by immunofluorescence assays, real-time PCR and Western blot. RESULTS: CAC extract was found to obviously down-regulate hind paw volume of CIA rats, with diminished inflammation response and damage. 177 targets were identified from CAC extract by MS-based pull-down assay. Bioinformatics analysis found that these targets were mainly enriched in macrophage activation and neutrophils extracellular traps (NETs). Additionally, we reported that CAC extract owned significant anti-inflammatory activity by regulating PI3K-Akt-mTOR signal pathway, and inhibited NETosis in response to PMA. CONCLUSIONS: We clarified that CAC extract significantly attenuated RA by inactivating macrophage and reducing NETosis via a multi-targets regulation.

17.
Biomed Chromatogr ; 38(4): e5829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38351664

ABSTRACT

The imbalance of steroid hormones is closely related to the occurrence and development of hepatocellular carcinoma (HCC). However, most research has focused on steroid hormone receptors, and reports about the relationship between the serum concentration of cortisol and the development of HCC are rare. The aim of this research was to establish a simple, specific, sensitive and reliable liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method for the quantitation of cortisol in human serum and to compare the level of cortisol in serum between 221 HCC patients and 183 healthy volunteers. The results showed that the correlation coefficients of the linear regression with a weighing factor of 1/x2 ranged from 0.9933 to 0.9984 over the range of 2-1,000 ng/ml. The inter- and intra-day precision and accuracy were <10%. The matrix effect and recovery of cortisol were 94.9-102.5% and 96.3-99.8%, respectively. The concentration of cortisol in HCC patients was significantly higher than that in healthy volunteers (p < 0.05) and was not affected by sex, age, menopause or α-fetoprotein (AFP) level. The present study reveals that elevated cortisol might promote the progression of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Female , Humans , Hydrocortisone , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Steroids
18.
J Asian Nat Prod Res ; 26(6): 747-755, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379373

ABSTRACT

An unprescribed nortriterpenoid with an aromatic E ring, uncanortriterpenoid A (1), together with fourteen known triterpenoids (2-15), were isolated from the hook-bearing stems of Uncaria rhynchophylla Miq. Based on extensive spectroscopic analyses, the NMR data of 2, 5, and 10 in CD3OD were assigned for the first time, and the wrongly assigned δC of C-27 and C-29 of 2 were revised. Among the known compounds, 7, 13, and 15 were isolated from this species for the first time, and 15 represents the first lanostane triterpenoid bearing an extra methylidene at C-24 for the Rubiaceae family. Additionally, compounds 6 and 14 exhibited moderate ferroptosis inhibitory activity, with an EC50 value of 14.74 ± 0.20 µM for 6 and 23.11 ± 1.31 µM for 14.


Subject(s)
Plant Stems , Triterpenes , Uncaria , Uncaria/chemistry , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Plant Stems/chemistry , Molecular Structure , Humans
19.
Chin J Nat Med ; 22(2): 127-136, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38342565

ABSTRACT

Psoriasis, a prevalent inherited skin condition, involves an inflammatory response as a key pathogenic mechanism. The Optimized Yinxieling Formula (OYF), rooted in traditional Chinese medicine, is extensively utilized in clinical settings to treat psoriasis. Although previous studies have demonstrated OYF's significant anti-inflammatory effects in psoriasis, its potential molecular targets and active components remain unexplored. This study aimed to unveil the anti-psoriasis molecular targets and active components of OYF. Our findings indicated that OYF extract markedly reduced the production of several inflammatory mediators, including IL-23, nitric oxide, TNF-α, and IL-1ß, in LPS-induced RAW264.7 cells. We synthesized OYF extract-crosslinked beads to isolate pharmacological targets from RAW264.7 lysates using an affinity purification strategy, known as Target Fishing. The enriched target proteins were subsequently identified via LC-MS/MS, followed by bioinformatics analysis to map the psoriasis-associated pathway-gene network. We identified a total of 76 potential target proteins, which were highly associated with mRNA transcription mechanisms. In particular, pathway-gene network analysis revealed that the IL-23 inflammatory pathway was involved in the anti-psoriasis effect of OYF extract. We further utilized a target protein-based affinity capture strategy, combined with LC-MS and SPR analysis, to globally screen OYF's active components, focusing on the mRNA transcription regulator, fused in sarcoma (FUS). This process led to the identification of umbelliferone, vanillic acid, protocatechuic acid, gentisic acid, and echinacoside as key compounds targeting FUS to inhibit IL-23 expression. Additionally, we formulated a compound cocktail (CpdC), which significantly reduced psoriasis area and severity index (PASI) scores and the expressions of IL-23 and Ki67 in an imiquimod (IMQ)-induced psoriasis mouse model. Collectively, our study elucidates the primary molecular targets and active components of OYF, offering novel insights for psoriasis treatment.


Subject(s)
Drugs, Chinese Herbal , Psoriasis , Animals , Mice , Chromatography, Liquid , Drugs, Chinese Herbal/therapeutic use , Tandem Mass Spectrometry , Psoriasis/drug therapy , Psoriasis/chemically induced , Psoriasis/pathology , Interleukin-23/adverse effects , RNA, Messenger , Disease Models, Animal , Mice, Inbred BALB C
20.
J Chromatogr A ; 1718: 464736, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38364618

ABSTRACT

Murrayae Folium et Cacumen (MFC) is a traditional Chinese medicine (TCM) derived from two plant species, Murraya exotica L. and Murraya paniculata (L.) Jack, as recorded in the Chinese Pharmacopoeia. However, there is no research available on the comprehensive analysis and comparison of the chemical constituents of these two species. In the present study, an integrated LC-MS-based quantitative metabolome strategy was proposed to conduct a comprehensive and in-depth qualitative and quantitative analysis and comparison of the chemome of M. exotica and M. paniculata. Firstly, the universal chemical information of two plants was obtained by quadrupole-time-of-flight mass spectrometry (Q-TOF-MS) combined with hybrid triple quadrupole-linear ion trap mass spectrometry (Qtrap-MS). Subsequently, a UNIFI in house database, the proposed fragmentation patterns, and a quantitative structure chromatographic retention relationship (QSRR) model were integrated for the rapid, comprehensive, and accurate structural elucidation of the chemical constituents of these two species. Thirdly, a large-scale quantitation method was established using scheduled multiple reaction monitoring mode (sMRM) and 76 primary components were selected as quantitative markers for the method validation. The obtained dataset was then subjected for multivariate statistical analysis to comprehensive comparison of these two plants. As a result, a total of 209 and 212 compounds were identified from M. exotica and M. paniculata, respectively. Among them, 103 common constituents were disclosed in both plants. The multivariate statistical analysis and absolute quantitative analysis revealed noticeable differences in the contents of specific chemical constituents between these two plants. The higher quantity constituents in M. exotica are 7-methoxycoumarins, while polymethoxylated flavonoids are the major constituents in M. paniculata. The common compounds accounted for approximately 80 % of the quantitative components in both plants, which provides a theoretical basis for their common use as the official source of MFC. In sum, the established quantitative chemomics strategy supplies an effective means for comprehensive chemical comparison of multi-source TCMs.


Subject(s)
Drugs, Chinese Herbal , Murraya , Murraya/chemistry , Mass Spectrometry , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry/methods , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...