Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Biomark ; 39(3): 231-243, 2024.
Article in English | MEDLINE | ID: mdl-38217587

ABSTRACT

BACKGROUND: Epithelial-mesenchymal transition (EMT) is an important biological process by which malignant tumor cells to acquire migration and invasion abilities. This study explored the role of KLF5 in the EMT process of in cervical cancer cell lines. OBJECTIVE: Krüpple-like factor 5 (KLF5) is a basic transcriptional factor that plays a key role in cell-cycle arrest and inhibition of apoptosis. However, the molecular mechanism by which KLF5 mediates the biological functions of cervical cancer cell lines has not been elucidated. Here, we focus on the potential function of ELF5 in regulating the EMT process in in vitro model of cervical cancer cell lines. METHOD: Western-blot and real-time quantitative PCR were used to detect the expression of EMT-related genes in HeLa cells. MTT assays, cell scratch and Transwell assays were used to assess HeLa cells proliferation and invasion capability. Using the bioinformatics tool JASPAR, we identified a high-scoring KLF5-like binding sequence in the SNAI1 gene promoter. Luciferase reporter assays was used to detect transcriptional activity for different SNAI1 promoter truncates. RESULT: After overexpressing the KLF5 gene in HeLa cells, KLF5 not only significantly inhibited the invasion and migration of HeLa cells, but also increased the expression of E-cadherin and decreased the expression of N-cadherin and MMP9. In addition, the mRNA expression of upstream regulators of E-cadherin, such as SNAI1, SLUG, ZEB1/2 and TWIST1 was also decreased. Furthermore, KLF5 inhibiting the expression of the SNAI1 gene via binding its promoter region, and the EMT of Hela cells was promoted after overexpression of the SNAI1 gene. CONCLUSION: These results indicate that KLF5 can downregulate the EMT process of HeLa cells by decreasing the expression of the SNAI1 gene, thereby inhibiting the migration and invasion of HeLa cervical cancer cells.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , HeLa Cells , Uterine Cervical Neoplasms/pathology , Cell Line, Tumor , Factor V/genetics , Factor V/metabolism , Cadherins/genetics , Cadherins/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
2.
Cancer Biomark ; 34(4): 571-582, 2022.
Article in English | MEDLINE | ID: mdl-35342080

ABSTRACT

BACKGROUND: With the rapid development of genomics and molecular biology, not only have biochemical indicators been used as tumour markers, but many new molecular markers have emerged. Epigenetic abnormalities are a new type of molecular marker, and DNA methylation is an important part of epigenetics. OBJECTIVE: This study used weighted gene coexpression network analysis (WGCNA) to analyse key methylation-driven genes in breast cancer. METHODS: The RNA-seq transcriptome data, DNA methylation data, and clinical information data of breast cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database, and the MethylMix R package was used to screen methylation-driven genes in breast cancer. The ClusterProfiler package and enrichplot package in R software were used to further analyse the function and signalling pathway of methylation-driven genes. Through univariate and multivariate Cox regression analyses, methylation-driver genes related to prognostic were obtained, a prognostic model was constructed and prognostic characteristics were analysed. RESULTS: The 17 methylation-driven genes related to prognosis were obtained by the WGCNA method in breast cancer, and the prognostic significance of these methylation-driven genes was determined by transcriptome and methylation combined survival analysis. Analysis of functions and signalling pathways showed that these genes were mainly enriched in biological processes and signalling pathway. Through univariate and multivariate Cox regression analyses, a prognostic model of 5 methylation-driven genes was constructed. CONCLUSIONS: The AUC of the receiver operating characteristic (ROC) curve of this model was 0.784, showing that the model had a good prediction effect. Based on WGCNA screening, it was found that only CDO1 was the key methylation-driven gene for prognosis in breast cancer, indicating that CDO1 may be an important indicator of the prognosis of breast cancer patients.


Subject(s)
Breast Neoplasms , Breast Neoplasms/genetics , DNA Methylation , Early Detection of Cancer , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Prognosis
3.
Dis Markers ; 2021: 9916881, 2021.
Article in English | MEDLINE | ID: mdl-34777635

ABSTRACT

BACKGROUND: Abdominal aortic aneurysm (AAA) is a progressive cardiovascular disease, which is a permanent and localized dilatation of the abdominal aorta with potentially fatal consequence of aortic rupture. Dysregulation of circRNAs is correlated with the development of various pathological events in cardiovascular diseases. However, the function of circRNAs in abdominal aortic aneurysm (AAA) is unknown and remains to be explored. This study is aimed at determining the regulatory mechanisms of circRNAs in AAAs. This study was aimed at exploring the underlying molecular mechanisms of abdominal aortic aneurysms based on the competing endogenous RNA (ceRNA) regulatory hypothesis of circRNA, miRNA, and mRNA. METHODS: The expression profiles of circRNAs (GSE144431), miRNAs (GSE62179), and mRNAs (GSE7084, GSE57691, and GSE47472) in human tissue sample from the aneurysm group and normal group were obtained from the Gene Expression Omnibus database, respectively. The circRNA-miRNA-mRNA network was constructed by using Cytoscape 3.7.2 software; then, the protein-protein interaction (PPI) network was constructed by using the STRING database, and the hub genes were identified by using the cytoHubba plug-in. The circRNA-miRNA-hub gene regulatory subnetwork was formed to understand the regulatory axis of hub genes in AAAs. RESULTS: The present study identified 40 differentially expressed circRNAs (DECs) in the GSE144431, 90 differentially expressed miRNAs (DEmiRs) in the GSE62179, and 168 differentially expressed mRNAs (DEGs) with the same direction regulation (130 downregulated and 38 upregulated) in the GSE7084, GSE57691, and GSE47472 datasets identified regarding AAAs. The miRNA response elements (MREs) of three DECs were then predicted. Four overlapping miRNAs were obtained by intersecting the predicted miRNA and DEmiRs. Then, 17 overlapping mRNAs were obtained by intersecting the predicted target mRNAs of 4 miRNAs with 168 DEGs. Furthermore, the circRNA-miRNA-mRNA network was constructed through 3 circRNAs, 4 miRNAs, and 17 mRNAs, and three hub genes (SOD2, CCR7, and PGRMC1) were identified. Simultaneously, functional enrichment and pathway analysis were performed within genes in the circRNA-miRNA-mRNA network. Three of them (SOD2, CCR7, and PGRMC1) were suggested to be crucial based on functional enrichment, protein-protein interaction, and ceRNA network analysis. Furthermore, the expression of SOD2 and CCR7 may be regulated by hsa_circ_0011449/hsa_circ_0081968/hsa-let-7f-5p; the expression of PGRMC1 may be regulated by hsa_circ_0011449/hsa_circ_0081968-hsa-let-7f-5p/hsa-let-7e-5p. CONCLUSION: In conclusion, the ceRNA interaction axis we identified may be an important target for the treatment of abdominal aortic aneurysms. This study provided further understanding of the potential pathogenesis from the perspective of the circRNA-related competitive endogenous RNA network in AAAs.


Subject(s)
Aortic Aneurysm, Abdominal/genetics , Gene Regulatory Networks , Protein Interaction Maps , Transcriptome , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Biomarkers/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CCR7/genetics , Receptors, CCR7/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
4.
BMC Genomics ; 22(1): 724, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34620091

ABSTRACT

BACKGROUND: Many studies on long chain non-coding RNAs (lncRNAs) are published in recent years. But the roles of lncRNAs in aortic dissection (AD) are still unclear and should be further examined. The present work focused on determining the molecular mechanisms underlying lncRNAs regulation in aortic dissection on the basis of the lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) network. METHODS: This study collected the lncRNAs (GSE52093), mRNAs (GSE52093) and miRNAs (GSE92427) expression data within human tissue samples with aortic dissection group and normal group based on Gene Expression Omnibus (GEO) database. RESULTS: This study identified three differentially expressed lncRNAs (DELs), 19 differentially expressed miRNAs (DEmiRs) and 1046 differentially expressed mRNAs (DEGs) identified regarding aortic dissection. Furthermore, we constructed a lncRNA-miRNA-mRNA network through three lncRNAs (including two with up-regulation and one with down-regulation), five miRNAs (five with up-regulation), as well as 211 mRNAs (including 103 with up-regulation and 108 with down-regulation). Simultaneously, we conducted functional enrichment and pathway analyses on genes within the as-constructed ceRNA network. According to our PPI/ceRNA network and functional enrichment analysis results, four critical genes were found (E2F2, IGF1R, BDNF and PPP2R1B). In addition, E2F2 level was possibly modulated via lncRNA FAM87A-hsa-miR-31-5p/hsa-miR-7-5p or lncRNA C9orf106-hsa-miR-7-5p. The expression of IGF1R may be regulated by lncRNA FAM87A-hsa-miR-16-5p/hsa-miR-7-5p or lncRNA C9orf106-hsa-miR-7-5p. CONCLUSION: In conclusion, the ceRNA interaction axis we identified is a potentially critical target for treating AD. Our results shed more lights on the possible pathogenic mechanism in AD using a lncRNA-associated ceRNA network.


Subject(s)
Aortic Dissection , MicroRNAs , RNA, Long Noncoding , Gene Regulatory Networks , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics
5.
Oxid Med Cell Longev ; 2021: 9934951, 2021.
Article in English | MEDLINE | ID: mdl-34306317

ABSTRACT

Abdominal aortic aneurysms (AAAs) have posed a great threat to human life, and the necessity of its monitoring and treatment is decided by symptomatology and/or the aneurysm size. Accumulating evidence suggests that circular RNAs (circRNAs) contribute a part to the pathogenesis of AAAs. circRNAs are novel single-stranded RNAs with a closed loop structure and high stability, having become the candidate biomarkers for numerous kinds of human disorders. Besides, circRNAs act as molecular "sponge" in organisms, capable of regulating the transcription level. Here, we characterize that the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. In the present work, studies on the biosynthesis, bibliometrics, and mechanisms of action of circRNAs were aims comprehensively reviewed, the role of circRNAs in the AAA pathogenic mechanism was illustrated, and their potential in diagnosing AAAs was examined. Moreover, the current evidence about the effects of circRNAs on AAA development through modulating endothelial cells (ECs), macrophages, and vascular smooth muscle cells (VSMCs) was summarized. Through thorough investigation, the molecular mechanisms underlying the role of circRNAs in AAA development were further elucidated. The results demonstrated that circRNAs had the application potential in the diagnosis and prevention of AAAs in clinical practice. The study of circRNA regulatory pathways would be of great assistance to the etiologic research of AAAs.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , MicroRNAs/metabolism , RNA, Circular/metabolism , Endothelial Cells/metabolism , Gene Expression Profiling/methods , Humans , Macrophages/metabolism , Myocytes, Smooth Muscle/metabolism
6.
Mol Biol Rep ; 48(6): 5023-5032, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34146197

ABSTRACT

E74-like factor five (ELF5) is a basic transcription factor that plays a key role in breast tissue and gland development. However, the molecular mechanism of ELF5 in breast cancer cells has not been elucidated. In this study, we examined the effect of ELF5 on the human breast cancer cell lines MCF-7 and T47D and confirmed that ELF5 can inhibit cell proliferation, migration and invasion. In further research, the relationship between ELF5 and CD24 was characterized in breast cancer cells. We found that CD24 was a target gene of ELF5 through chromatin immunoprecipitation (ChIP) -Sequence assays, and proved that ELF5 could bind to the ETS cis-element on the proximal promoter of the CD24 gene and regulate the expression of CD24. Moreover, overexpression of ELF5 in MCF-7 cells significantly increased both the mRNA and protein levels of CD24, while knockdown of CD24 expression restored cell proliferation, migration and invasion through adaptive ELF5 expression in MCF-7 cells. Therefore, these data suggest that ELF5 inhibits migration and invasion of breast cancer cells by regulating CD24 expression, which make provides a molecular mechanism for ELF5 to inhibit breast cancer from a new perspective and provides further theoretical support for the treatment and prevention of breast cancer.


Subject(s)
Breast Neoplasms/metabolism , CD24 Antigen/metabolism , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Breast Neoplasms/genetics , CD24 Antigen/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Female , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , MCF-7 Cells , Neoplasm Invasiveness/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/genetics
7.
Cancer Biomark ; 32(3): 303-315, 2021.
Article in English | MEDLINE | ID: mdl-34151839

ABSTRACT

BACKGROUND: Since the molecular mechanisms of cervical cancer (CC) have not been completely discovered, it is of great significance to identify the hub genes and pathways of this disease to reveal the molecular mechanisms of cervical cancer. OBJECTIVE: The study aimed to identify the biological functions and prognostic value of hub genes in cervical cancer. METHODS: The gene expression data of CC patients were downloaded from the Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database. The core genes were screened out by differential gene expression analysis and weighted gene co-expression network analysis (WGCNA). R software, the STRING online tool and Cytoscape software were used to screen out the hub genes. The GEPIA public database was used to further verify the expression levels of the hub genes in normal tissues and tumour tissues and determine the disease-free survival (DFS) rates of the hub genes. The protein expression of the survival-related hub genes was identified with the Human Protein Atlas (HPA) database. RESULTS: A total of 64 core genes were screened, and 10 genes, including RFC5, POLE3, RAD51, RMI1, PALB2, HDAC1, MCM4, ESR1, FOS and E2F1, were identified as hub genes. Compared with that in normal tissues, RFC5, POLE3, RAD51,RMI1, PALB2, MCM4 and E2F1 were all significantly upregulated in cervical cancer, ESR1 was significantly downregulated in cervical cancer, and RFC5 expression in CC patients was significantly related to OS. In the DFS analysis, no significant difference was observed in the expression level of RFC5 in cervical cancer patients. Finally, RFC5 protein levels verified by the HPA database were consistently upregulated with mRNA levels in CC samples. CONCLUSIONS: RFC5 may play important roles in the occurrence and prognosis of CC. It could be further explored and validated as a potential predictor and therapeutic target for CC.


Subject(s)
Computational Biology/methods , Early Detection of Cancer/methods , Gene Expression/genetics , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics , Biomarkers, Tumor , Disease-Free Survival , Female , Humans , Prognosis , Uterine Cervical Neoplasms/mortality , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...