Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Arch Microbiol ; 204(6): 312, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35538332

ABSTRACT

The study devised a detection process combining Nile red-containing media, polymerase chain reaction (PCR), and gas chromatography (GC) to evaluate the possibility of microbes becoming polyhydroxyalkanoate (PHA) producers. The Nile red and PCR detection steps of designating PHA producers had true positive rates of 39.4% and 40%, respectively, and the use of GC analysis as the final step yielded accurate results for the production types and yields of PHAs. When the number of screening samples was up to 102, connecting all three inspection methods in tandem generated economic benefits. When up to 105 samples were screened, the use of all three detection methods reduced the cost to 3% of the cost and the time consumed 6% of using just Nile red plus GC or PCR plus GC. However, when the sum of samples exceeded 108, the cost of combining the three methods exceeds 1 million US dollars and was excessive; here, the combination of Nile red plus PCR could be considered, even though the true positive rate was only 30.7%.


Subject(s)
Bacteria , Polyhydroxyalkanoates , Bacteria/genetics , Chromatography, Gas , Oxazines , Polymerase Chain Reaction/methods
2.
J Biomed Sci ; 29(1): 9, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35130876

ABSTRACT

BACKGROUND: K1 capsular polysaccharide (CPS)-associated Klebsiella pneumoniae is the primary cause of pyogenic liver abscesses (PLA) in Asia. Patients with PLA often have serious complications, ultimately leading to a mortality of ~ 5%. This K1 CPS has been reported as a promising target for development of glycoconjugate vaccines against K. pneumoniae infection. The pyruvylation and O-acetylation modifications on the K1 CPS are essential to the immune response induced by the CPS. To date, however, obtaining the fragments of K1 CPS that contain the pyruvylation and O-acetylation for generating glycoconjugate vaccines still remains a challenge. METHODS: We analyzed the digested CPS products with NMR spectroscopy and mass spectrometry to reveal a bacteriophage-derived polysaccharide depolymerase specific to K1 CPS. The biochemical and biophysical properties of the enzyme were characterized and its crystal structures containing bound CPS products were determined. We also performed site-directed mutagenesis, enzyme kinetic analysis, phage absorption and infectivity studies, and treatment of the K. pneumoniae-infected mice with the wild-type and mutant enzymes. RESULTS: We found a bacteriophage-derived polysaccharide lyase that depolymerizes the K1 CPS into fragments of 1-3 repeating trisaccharide units with the retention of the pyruvylation and O-acetylation, and thus the important antigenic determinants of intact K1 CPS. We also determined the 1.46-Å-resolution, product-bound crystal structure of the enzyme, revealing two distinct carbohydrate-binding sites in a trimeric ß-helix architecture, which provide the first direct evidence for a second, non-catalytic, carbohydrate-binding site in bacteriophage-derived polysaccharide depolymerases. We demonstrate the tight interaction between the pyruvate moiety of K1 CPS and the enzyme in this second carbohydrate-binding site to be crucial to CPS depolymerization of the enzyme as well as phage absorption and infectivity. We also demonstrate that the enzyme is capable of protecting mice from K1 K. pneumoniae infection, even against a high challenge dose. CONCLUSIONS: Our results provide insights into how the enzyme recognizes and depolymerizes the K1 CPS, and demonstrate the potential use of the protein not only as a therapeutic agent against K. pneumoniae, but also as a tool to prepare structurally-defined oligosaccharides for the generation of glycoconjugate vaccines against infections caused by this organism.


Subject(s)
Bacteriophages , Klebsiella Infections , Lyases , Animals , Bacterial Capsules/genetics , Bacteriophages/genetics , Humans , Kinetics , Klebsiella pneumoniae , Mice
3.
J Phys Condens Matter ; 32(45): 455401, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32634790

ABSTRACT

We investigate exotic supersolid phases in the extended Bose-Hubbard model with infinite projected entangled-pair state, numerical exact diagonalization, and mean-field theory. We demonstrate that many different supersolid phases can be generated by changing signs of hopping terms, and the interactions along with the frustration of hopping terms are important to stabilize those supersolid states. We argue the effect of frustration introduced by the competition of hopping terms in the supersolid phases from the mean-field point of view. This helps to give a clearer picture of the background mechanism for underlying superfluid/supersolid states to be formed. With this knowledge, we predict and realize the d-wave superfluid, which shares the same pairing symmetry with high-T c materials, and its extended phases. We believe that our results contribute to preliminary understanding for desired target phases in the real-world experimental systems.

4.
Sci Rep ; 9(1): 1719, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30737472

ABSTRACT

One of the most puzzling problems of high temperature cuprate superconductor is the pseudogap phase (PG) at temperatures above the superconducting transition temperature in the underdoped regime. The PG phase is found by the angle-resolved photoemission spectra (ARPES) to have a gap at some regions in momentum space and a fraction of Fermi surface remained, known as Fermi arcs. The arc turns into a d-wave SC gap with a node below the SC transition temperature. Here, by studying a strongly correlated model at low temperatures, we obtained a phase characterized by two kinds of pairing order parameters with the total momentum of the Cooper pair to be zero and finite. The finite momentum pairing is accompanied with a spatial modulation of pairing order, i.e. a pair density wave (PDW). These PDW phases are intertwined with modulations of charge density and intra-unit cell form factors. The coexistence of the two different pairing orders provides the unique two-gaps like spectra observed by ARPES for superconducting cuprates. As temperature raises, the zero-momentum pairing order vanishes while the finite momentum pairing orders are kept, thus Fermi arcs are realized. The calculated quasiparticle spectra have the similar doping and temperature dependence as reported by ARPES and scanning tunneling spectroscopy (STS). The consequence of breaking symmetry between x and y due to the unidirectional PDW and the possibility to probe such a PDW state in the PG phase is discussed.

5.
J Therm Biol ; 77: 157-172, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30196895

ABSTRACT

The hypothalamus is the coordinating center for maintaining temperature homeostasis. In this study, global protein expression in the hypothalami of layer-type Taiwan country chickens in response to acute heat stress was investigated. Twelve 30-week-old female TCCs were divided into three acute heat-stressed groups, namely acute heat stress at 36 °C for 4 h with 0 h (without recovery, H4R0), 2 h (H4R2), or 6 h (H4R6) of recovery. A control group was maintained at 25 °C. Hypothalamus samples were collected at the end of each time point for proteomic analysis. The analysis results revealed that 134 protein spots representing 118 distinct proteins exhibited differential expressions after acute heat stress treatment. Results of gene ontology analysis showed that most of the differentially expressed proteins are involved in carbohydrate metabolism, cellular processes, actin cytoskeleton organization, and responses to stimuli. Functional pathway analysis results suggested that the proteins are associated with networks of carbon metabolism, glycolysis, and gluconeogenesis. Upregulation of the expression of triosephosphate isomerase, phosphoglycerate kinase, pyruvate kinase, alpha-enolase, glycogen phosphorylase (brain form), phosphoglucomutase, L-lactate dehydrogenase A chain and downregulation of 6-phosphogluconolactonase expression indicated an increase in the glycolytic activity and glucose supply for ATP production in the hypothalami in response to heat stress. By contrast, upregulated expressions of heat shock protein 90 alpha, glutathione S-transferase 2s, peroxiredoxin-1, and dihydropyrimidinase-like 2 suggested that acute heat stress adversely affects the hypothalamus; thus, it induces mechanisms that prevent oxidative damage and endoplasmic reticulum stress. In conclusion, acute heat stress induces differential protein expression in the hypothalami of the L2 strain Taiwan country chickens, which may manifest detrimental effects. Furthermore, differential expression is a critical response in the hypothalamus for the regulation of thermotolerance.


Subject(s)
Avian Proteins/metabolism , Chickens/physiology , Heat-Shock Response , Hypothalamus/physiology , Protein Interaction Maps , Animals , Avian Proteins/analysis , Body Temperature Regulation , Female , Hypothalamus/chemistry , Proteomics , Taiwan
6.
Anim Sci J ; 89(10): 1475-1485, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30125421

ABSTRACT

The hypothalamus is a critical center for regulating heat retention or dissipation. This study investigated global protein changes in the hypothalamus of broiler-type Taiwan country chickens (TCCs) after acute heat stress. Twelve TCC hens aged 30 weeks were allocated to groups subjected to acute heat stress at 38°C for 2 hr without recovery, with 2 hr of recovery, and with 6 hr of recovery; a control group was maintained at 25°C. Hypothalami were collected for protein expression analysis at the end of each time point. The results showed 114 protein spots differentially expressed after acute heat stress. Most of the differentially expressed proteins were involved in cellular processes, metabolism, transport, and cellular component organization. Functional annotation analysis suggested that these proteins were related to cellular defensive responses against heat and oxidative stress, detoxification and toxin export/delivery, cytoskeleton integrity, oxygen transport, and neural development. The results of this study suggest that acute heat stress damages the hypothalamus of broiler-type TCCs through oxidative stress and provokes a series of responses to stabilize protein structures, degrade misfolded proteins, and remodel cytoskeletons for attenuating the detrimental effects by acute heat stress.


Subject(s)
Body Temperature Regulation/physiology , Chickens/metabolism , Chickens/physiology , Hot Temperature/adverse effects , Hypothalamus/metabolism , Hypothalamus/physiology , Proteins/chemistry , Proteins/metabolism , Proteolysis , Proteomics/methods , Stress, Physiological/physiology , Animals , Cytoskeleton/metabolism , Female , Oxidative Stress , Protein Folding , Proteins/physiology , Taiwan , Time Factors
7.
Sci Rep ; 8(1): 1320, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358656

ABSTRACT

This study investigated global gene and protein expression in the small yellow follicle (SYF; 6-8 mm in diameter) tissues of chickens in response to acute heat stress. Twelve 30-week-old layer-type hens were divided into four groups: control hens were maintained at 25 °C while treatment hens were subjected to acute heat stress at 36 °C for 4 h without recovery, with 2-h recovery, and with 6-h recovery. SYFs were collected at each time point for mRNA and protein analyses. A total of 176 genes and 93 distinct proteins with differential expressions were identified, mainly associated with the molecular functions of catalytic activity and binding. The upregulated expression of heat shock proteins and peroxiredoxin family after acute heat stress is suggestive of responsive machineries to protect cells from apoptosis and oxidative insults. In conclusion, both the transcripts and proteins associated with apoptosis, stress response, and antioxidative defense were upregulated in the SYFs of layer-type hens to alleviate the detrimental effects by acute heat stress. However, the genomic regulations of specific cell type in response to acute heat stress of SYFs require further investigation.


Subject(s)
Chickens/genetics , Heat-Shock Response , Ovarian Follicle/metabolism , Transcriptome , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Chickens/physiology , Female , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation
8.
J Poult Sci ; 55(2): 120-136, 2018.
Article in English | MEDLINE | ID: mdl-32055165

ABSTRACT

Heat stress hampers egg production and lowers fertility in layers. This study investigated global protein abundance in the small yellow follicles (SYFs, 6-8 mm diameter) of a broiler-type strain of Taiwan country chickens (TCCs) under acute heat stress. Twelve 30-week-old TCC hens were allocated to a control group maintained at 25°C, and to three acute heat-stressed groups subjected to 38°C for 2 h without recovery, with 2-h recovery, or with 6-h recovery. Two-dimensional difference gel electrophoresis analysis identified 119 significantly differentially expressed proteins after acute heat exposure. Gene ontology analysis revealed that most of these proteins are involved in molecular binding (34%), catalytic activity (23%), and structural molecule activity (11%), and participate in metabolic processes (20%), cellular processes (20%), and cellular component organization or biogenesis (11%). Proteins associated with stress response and survival (HSP25, HSP47, HSP70, HSC70, HSPA9), cytoskeleton remodeling, mitochondrial metabolic process of ATP production, antioxidative defense (peroxiredoxin-6), cargo lipid export and delivery (vitellogenin, apolipoprotein B and A1), and toxin/metabolite clearance and delivery (albumin) were upregulated after acute heat stress in the SYFs of TCCs. No overt cell death and atresia were observed in SYFs after acute heat stress. Collectively, these responses may represent a protective mechanism to maintain follicle cell integrity and survival, thereby ensuring a sufficient pool of SYFs for selection into the ovulation hierarchy for successful egg production.

9.
Sci Rep ; 6: 18675, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26732076

ABSTRACT

One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy.

10.
Theriogenology ; 85(3): 483-494.e8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26462659

ABSTRACT

Acute heat stress severely impacts poultry production. The hypothalamus acts as a crucial center to regulate body temperature, detect temperature changes, and modulate the autonomic nervous system and endocrine loop for heat retention and dissipation. The purpose of this study was to investigate global gene expression in the hypothalamus of broiler-type B strain Taiwan country chickens after acute heat stress. Twelve 30-week-old hens were allocated to four groups. Three heat-stressed groups were subjected to acute heat stress at 38 °C for 2 hours without recovery (H2R0), with 2 hours of recovery (H2R2), and with 6 hours of recovery (H2R6). The control hens were maintained at 25 °C. At the end, hypothalamus samples were collected for gene expression analysis. The results showed that 24, 11, and 25 genes were upregulated and 41, 15, and 42 genes were downregulated in H2R0, H2R2, and H2R6 treatments, respectively. The expressions of gonadotropin-releasing hormone 1 (GNRH1), heat shock 27-kDa protein 1 (HSPB1), neuropeptide Y (NPY), and heat shock protein 25 (HSP25) were upregulated at all recovery times after heat exposure. Conversely, the expression of TPH2 was downregulated at all recovery times. A gene ontology analysis showed that most of the differentially expressed genes were involved in biological processes including cellular processes, metabolic processes, localization, multicellular organismal processes, developmental processes, and biological regulation. A functional annotation analysis showed that the differentially expressed genes were related to the gene networks of responses to stress and reproductive functions. These differentially expressed genes might be essential and unique key factors in the heat stress response of the hypothalamus in chickens.


Subject(s)
Chickens/metabolism , Gene Expression Profiling/veterinary , Hypothalamus/metabolism , Animals , Down-Regulation/physiology , Female , Gonadotropin-Releasing Hormone/genetics , HSP27 Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Hot Temperature , Hypothalamus/chemistry , Neuropeptide Y/genetics , RNA, Messenger/analysis , Taiwan , Tryptophan Hydroxylase/genetics , Up-Regulation/physiology
11.
PLoS One ; 10(11): e0143418, 2015.
Article in English | MEDLINE | ID: mdl-26587838

ABSTRACT

This study investigated global gene expression in the small yellow follicles (6-8 mm diameter) of broiler-type B strain Taiwan country chickens (TCCs) in response to acute heat stress. Twelve 30-wk-old TCC hens were divided into four groups: control hens maintained at 25°C and hens subjected to 38°C acute heat stress for 2 h without recovery (H2R0), with 2-h recovery (H2R2), and with 6-h recovery (H2R6). Small yellow follicles were collected for RNA isolation and microarray analysis at the end of each time point. Results showed that 69, 51, and 76 genes were upregulated and 58, 15, 56 genes were downregulated after heat treatment of H2R0, H2R2, and H2R6, respectively, using a cutoff value of two-fold or higher. Gene ontology analysis revealed that these differentially expressed genes are associated with the biological processes of cell communication, developmental process, protein metabolic process, immune system process, and response to stimuli. Upregulation of heat shock protein 25, interleukin 6, metallopeptidase 1, and metalloproteinase 13, and downregulation of type II alpha 1 collagen, discoidin domain receptor tyrosine kinase 2, and Kruppel-like factor 2 suggested that acute heat stress induces proteolytic disintegration of the structural matrix and inflamed damage and adaptive responses of gene expression in the follicle cells. These suggestions were validated through gene expression, using quantitative real-time polymerase chain reaction. Functional annotation clarified that interleukin 6-related pathways play a critical role in regulating acute heat stress responses in the small yellow follicles of TCC hens.


Subject(s)
Chickens/physiology , Gene Expression Profiling , Gene Expression Regulation , Heat-Shock Response/genetics , Hot Temperature , Ovarian Follicle/metabolism , Animals , Body Temperature , DNA Primers , Female , Interleukin-6/metabolism , Oligonucleotide Array Sequence Analysis , Ovarian Follicle/pathology , RNA/analysis , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Stress, Physiological , Taiwan , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...