Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Biomed Sci ; 31(1): 58, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824576

ABSTRACT

BACKGROUND: A vaccine against Trypanosoma cruzi, the agent of Chagas disease, would be an excellent additional tool for disease control. A recombinant vaccine based on Tc24 and TSA1 parasite antigens was found to be safe and immunogenic in naïve macaques. METHODS: We used RNA-sequencing and performed a transcriptomic analysis of PBMC responses to vaccination of naïve macaques after each vaccine dose, to shed light on the immunogenicity of this vaccine and guide the optimization of doses and formulation. We identified differentially expressed genes and pathways and characterized immunoglobulin and T cell receptor repertoires. RESULTS: RNA-sequencing analysis indicated a clear transcriptomic response of PBMCs after three vaccine doses, with the up-regulation of several immune cell activation pathways and a broad non-polarized immune profile. Analysis of the IgG repertoire showed that it had a rapid turnover with novel IgGs produced following each vaccine dose, while the TCR repertoire presented several persisting clones that were expanded after each vaccine dose. CONCLUSIONS: These data suggest that three vaccine doses may be needed for optimum immunogenicity and support the further evaluation of the protective efficacy of this vaccine.


Subject(s)
Chagas Disease , Macaca mulatta , Protozoan Vaccines , Receptors, Antigen, T-Cell , Animals , Chagas Disease/immunology , Chagas Disease/prevention & control , Receptors, Antigen, T-Cell/immunology , Protozoan Vaccines/immunology , Trypanosoma cruzi/immunology , Immunoglobulins/immunology
2.
Article in English | MEDLINE | ID: mdl-38695180

ABSTRACT

BACKGROUND: Chagas disease is caused by Trypanosoma cruzi, whose genetic structure is divided into six discrete typing units (DTUs) known as TcI-TcVI. In the Yucatan Peninsula, Mexico, information regarding the DTUs circulating in wild mammals is scarce, while this is important knowledge for our understanding of T. cruzi transmission dynamics. METHODS: In the current study, we sampled wild mammals in a sylvatic site of the Yucatan Peninsula and assessed their infection with T. cruzi by PCR. Then, for infected mammals, we amplified and sequenced nuclear and mitochondrial T. cruzi genetic markers for DTU identification. RESULTS: In total, we captured 99 mammals belonging to the orders Chiroptera, Rodentia and Didelphimorphia. The prevalence of infection with T. cruzi was 9% (9/99; 95% CI [5, 16]), and we identified TcI in a Jamaican fruit bat, Artibeus jamaicensis. Moreover, we fortuitously identified Trypanosoma dionisii in another Jamaican fruit bat and detected an unidentified Trypanosoma species in a third specimen. While the latter discoveries were not expected because we used primers designed for T. cruzi, this study is the first to report the identification of T. dionisii in a bat from Yucatan, Mexico, adding to a recent first report of T. dionisii in bats from Veracruz, and first report of this Trypanosoma species in Mexico. CONCLUSION: Further research is needed to enhance our knowledge of T. cruzi DTUs and Trypanosoma diversity circulating in wildlife in Southeastern Mexico.

3.
J Med Entomol ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373261

ABSTRACT

Triatoma sanguisuga (Leconte) is one of the most widely distributed kissing bugs in the United States, associated with an extensive zoonotic circulation of Trypanosoma cruzi, the agent of Chagas disease, in a large part of the country. However, the actual risk for human infection in the United States is poorly understood. Here, we further assessed the ecology of T. sanguisuga bugs collected in residents' houses in Illinois and Louisiana, using a metagenomic approach to identify their blood-feeding sources, T. cruzi parasites and gut microbiota. Blood meal analysis revealed feeding on domestic animals (dogs, cats, pigs, goats, and turkeys), synanthropic species (raccoons, opossums, and squirrels), as well as the more sylvatic white-tail deer. Human blood was identified in 11/14 (78%) of bugs, highlighting a frequent vector-human contact. The infection rate with T. cruzi was 53% (8/15), and most infected bugs (6/8) had fed on humans. A total of 41 bacterial families were identified, with significant differences in microbiota alpha and beta diversity between bugs from Louisiana and Illinois. However, predicted metabolic functions remained highly conserved, suggesting important constraints to fulfill their role in bug biology. These results confirmed a significant risk for vector-borne transmission of T. cruzi to humans in Louisiana and Illinois, which warrants more active screening for human infections. Also, while there is broad plasticity in the bacterial composition of T. sanguisuga microbiota, there are strong constraints to preserve metabolic profile and function, making it a good target for novel vector control strategies.

4.
Trop Med Infect Dis ; 8(12)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38133447

ABSTRACT

Chagas disease is a public health problem in the Americas, from the southern United States (USA) to Argentina. In the USA, less than 1% of domestic cases have been identified and less than 0.3% of total cases have received treatment. Little is known about affected immigrant Latin American communities. A prospective study was conducted to assess knowledge about Chagas disease among the Latin American community living in the Greater New Orleans area. Participants answered a baseline questionnaire, viewed a short educational video presentation, completed a post-presentation questionnaire, and were screened with an FDA-approved blood rapid diagnostic test (RDT). A total of 154 participants from 18 Latin American countries (n = 138) and the USA (n = 16) were enrolled and screened for Trypanosoma cruzi infection. At baseline, 57% of the participants knew that Chagas disease is transmitted through an insect vector, and 26% recognized images of the vector. Following the administration of an educational intervention, the participants' knowledge regarding vector transmission increased to 91% and 35% of participants were able to successfully identify images of the vector. Five participants screened positive for T. cruzi infection, indicating a 3.24% [95%CI: 1.1-7.5%] prevalence of Trypanosoma cruzi infection within the Latin American community of the New Orleans area. Results highlight the urgent need for improving access to education and diagnostics of Chagas disease.

5.
Res Sq ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961272

ABSTRACT

A vaccine against Trypanosoma cruzi, the agent of Chagas disease, would be an excellent additional tool for disease control. A recombinant vaccine based on Tc24 and TSA1 parasite antigens was found to be safe and immunogenic in naïve macaques. Here we performed a transcriptomic analysis of PBMC responses to vaccination, to shed light on the immunogenicity of this vaccine and guide the optimization of doses and formulation. RNA-sequencing analysis indicated a clear transcriptomic response of PBMCs from macaques after three vaccine doses, with the up-regulation of several immune cell activation pathways and a broad non-polarized immune profile. Analysis of the IgG repertoire showed that it had a rapid turnover with novel IgGs produced following each vaccine dose, while the TCR repertoire presented several persisting clones that were expanded after each vaccine dose. These data suggest that three vaccine doses may be needed for optimum immunogenecity and support the further evaluation of the protective efficacy of this vaccine.

6.
Microbiol Spectr ; : e0423622, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37668388

ABSTRACT

Chronic Chagasic cardiomyopathy develops years after infection in 20-40% of patients, but disease progression is poorly understood. Here, we assessed Trypanosoma cruzi parasite dynamics and pathogenesis over a 2.5-year period in naturally infected rhesus macaques. Individuals with better control of parasitemia were infected with a greater diversity of parasite strains compared to those with increasing parasitemia over time. Also, the in vivo parasite multiplication rate decreased with increasing parasite diversity, suggesting competition among strains or a stronger immune response in multiple infections. Significant differences in electrocardiographic (ECG) profiles were observed in Chagasic macaques compared to uninfected controls, suggesting early conduction defects, and changes in ECG patterns over time were observed only in macaques with increasing parasitemia and lower parasite diversity. Disease progression was also associated with plasma fibronectin degradation, which may serve as a biomarker. These data provide a novel framework for the understanding of Chagas disease pathogenesis, with parasite diversity shaping disease progression.IMPORTANCEChagas disease progression remains poorly understood, and patients at increased risk of developing severe cardiac disease cannot be distinguished from those who may remain asymptomatic. Monitoring of Trypanosoma cruzi strain dynamics and pathogenesis over 2-3 years in naturally infected macaques shows that increasing parasite diversity in hosts is detrimental to parasite multiplication and Chagasic cardiomyopathy disease progression. This provides a novel framework for the understanding of Chagas disease pathogenesis.

7.
Front Immunol ; 14: 1281732, 2023.
Article in English | MEDLINE | ID: mdl-38193073

ABSTRACT

Bats carry many zoonotic pathogens without showing pronounced pathology, with a few exceptions. The underlying immune tolerance mechanisms in bats remain poorly understood, although information-rich omics tools hold promise for identifying a wide range of immune markers and their relationship with infection. To evaluate the generality of immune responses to infection, we assessed the differences and similarities in serum proteomes of wild vampire bats (Desmodus rotundus) across infection status with five taxonomically distinct pathogens: bacteria (Bartonella spp., hemoplasmas), protozoa (Trypanosoma cruzi), and DNA (herpesviruses) and RNA (alphacoronaviruses) viruses. From 19 bats sampled in 2019 in Belize, we evaluated the up- and downregulated immune responses of infected versus uninfected individuals for each pathogen. Using a high-quality genome annotation for vampire bats, we identified 586 serum proteins but found no evidence for differential abundance nor differences in composition between infected and uninfected bats. However, using receiver operating characteristic curves, we identified four to 48 candidate biomarkers of infection depending on the pathogen, including seven overlapping biomarkers (DSG2, PCBP1, MGAM, APOA4, DPEP1, GOT1, and IGFALS). Enrichment analysis of these proteins revealed that our viral pathogens, but not the bacteria or protozoa studied, were associated with upregulation of extracellular and cytoplasmatic secretory vesicles (indicative of viral replication) and downregulation of complement activation and coagulation cascades. Additionally, herpesvirus infection elicited a downregulation of leukocyte-mediated immunity and defense response but an upregulation of an inflammatory and humoral immune response. In contrast to our two viral infections, we found downregulation of lipid and cholesterol homeostasis and metabolism with Bartonella spp. infection, of platelet-dense and secretory granules with hemoplasma infection, and of blood coagulation pathways with T. cruzi infection. Despite the small sample size, our results suggest that vampire bats have a similar suite of immune mechanisms for viruses distinct from responses to the other pathogen taxa, and we identify potential biomarkers that can expand our understanding of pathogenesis of these infections in bats. By applying a proteomic approach to a multi-pathogen system in wild animals, our study provides a distinct framework that could be expanded across bat species to increase our understanding of how bats tolerate pathogens.


Subject(s)
Chagas Disease , Chiroptera , Humans , Animals , Proteomics , Phenotype , Down-Regulation , Biomarkers
8.
Vet Res ; 52(1): 53, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33823911

ABSTRACT

Trypanosoma cruzi is a zoonotic parasite endemic in the southern US and the Americas, which may frequently infect dogs, but limited information is available about infections in cats. We surveyed a convenience sample of 284 shelter cats from Southern Louisiana to evaluate T. cruzi infection using serological and PCR tests. Parasites from PCR positive cats were also genotyped by PCR and deep sequencing to assess their genetic diversity. We detected a seropositivity rate for T. cruzi of at least 7.3% (17/234), and 24.6% of cats (70/284) were PCR positive for the parasite. Seropositivity increased with cat age (R2 = 0.91, P = 0.011), corresponding to an incidence of 7.2% ± 1.3 per year, while PCR positivity decreased with age (R2 = 0.93, P = 0.007). Cats were predominantly infected with parasites from TcI and TcVI DTUs, and to a lesser extent from TcIV and TcV DTUs, in agreement with the circulation of these parasite DTUs in local transmission cycles. These results indicate that veterinarians should have a greater awareness of T. cruzi infection in pets and that it would be important to better evaluate the risk for spillover infections in humans.


Subject(s)
Cat Diseases/epidemiology , Chagas Disease/veterinary , Trypanosoma cruzi/isolation & purification , Animals , Cat Diseases/parasitology , Cats , Chagas Disease/epidemiology , Chagas Disease/parasitology , Female , Genotype , Incidence , Louisiana/epidemiology , Male , Seroepidemiologic Studies , Trypanosoma cruzi/classification , Trypanosoma cruzi/genetics
9.
Genome ; 64(5): 525-531, 2021 May.
Article in English | MEDLINE | ID: mdl-33086026

ABSTRACT

Chagas disease is a zoonotic, parasitic, vector-borne neglected tropical disease that affects the lives of over 6 million people throughout the Americas. Trypanosoma cruzi, the causative agent, presents extensive genetic diversity. Here we report the genome sequence of reference strain SC43cl1, a hybrid strain belonging to the TcV discrete typing unit (DTU). The assembled diploid genome was 79 Mbp in size, divided into 1236 contigs with an average coverage reaching 180×. There was extensive synteny of SC43cl1 genome with closely related TcV and TcVI genomes, with limited sequence rearrangements. TcVI genomes included several expansions not present in TcV strains. Comparative analysis of both nuclear and kinetoplast sequences clearly separated TcV from TcVI strains, which strongly supports the current DTU classification.


Subject(s)
DNA, Kinetoplast/genetics , Genetic Structures , Parasites/genetics , Trypanosoma cruzi/genetics , Animals , Chagas Disease/parasitology , Genetic Variation , Genotype , Phylogeny , Synteny
10.
PLoS Negl Trop Dis ; 14(12): e0008932, 2020 12.
Article in English | MEDLINE | ID: mdl-33332357

ABSTRACT

BACKGROUND: Chagas disease is a neglected zoonosis of growing concern in the southern US, caused by the parasite Trypanosoma cruzi. We genotyped parasites in a large cohort of PCR positive dogs to shed light on parasite transmission cycles and assess potential relationships between parasite diversity and serological test performance. METHODOLOGY/PRINCIPAL FINDINGS: We used a metabarcoding approach based on deep sequencing of T. cruzi mini-exon marker to assess parasite diversity. Phylogenetic analysis of 178 sequences from 40 dogs confirmed the presence of T. cruzi discrete typing unit (DTU) TcI and TcIV, as well as TcII, TcV and TcVI for the first time in US dogs. Infections with multiple DTUs occurred in 38% of the dogs. These data indicate a greater genetic diversity of T. cruzi than previously detected in the US. Comparison of T. cruzi sequence diversity indicated that highly similar T. cruzi strains from these DTUs circulate in hosts and vectors in Louisiana, indicating that they are involved in a shared T. cruzi parasite transmission cycle. However, TcIV and TcV were sampled more frequently in vectors, while TcII and TcVI were sampled more frequently in dogs. CONCLUSIONS/SIGNIFICANCE: These observations point to ecological host-fitting being a dominant mechanism involved in the diversification of T. cruzi-host associations. Dogs with negative, discordant or confirmed positive T. cruzi serology harbored TcI parasites with different mini-exon sequences, which strongly supports the hypothesis that parasite genetic diversity is a key factor affecting serological test performance. Thus, the identification of conserved parasite antigens should be a high priority for the improvement of current serological tests.


Subject(s)
Chagas Disease/veterinary , Exons/genetics , Genetic Variation , Trypanosoma cruzi/genetics , Animals , Chagas Disease/epidemiology , Chagas Disease/parasitology , Chagas Disease/transmission , Cohort Studies , Dogs , Genotype , Humans , Louisiana/epidemiology , Phylogeny , Serologic Tests/veterinary , Trypanosoma cruzi/immunology , Trypanosoma cruzi/physiology , Zoonoses
11.
Parasit Vectors ; 13(1): 577, 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33189151

ABSTRACT

BACKGROUND: Trypanosoma cruzi - the causative agent of Chagas disease - is known to circulate in commensal pests, but its occurrence in urban environments is not well understood. We addressed this deficit by determining the distribution and prevalence of T. cruzi infection in urban populations of commensal and wild rodents across New Orleans (Louisiana, USA). We assessed whether T. cruzi prevalence varies according to host species identity and species co-occurrences, and whether T. cruzi prevalence varies across mosaics of abandonment that shape urban rodent demography and assemblage structure in the city. METHODS: Leveraging city-wide population and assemblage surveys, we tested 1428 rodents comprising 5 species (cotton rats, house mice, Norway rats, rice rats and roof rats) captured at 98 trapping sites in 11 study areas across New Orleans including nine residential neighborhoods and a natural area in Orleans Parish and a neighborhood in St. Bernard Parish. We also assayed Norway rats at one site in Baton Rouge (Louisiana, USA). We used chi-square tests to determine whether infection prevalence differed among host species, among study areas, and among trapping sites according to the number of host species present. We used generalized linear mixed models to identify predictors of T. cruzi infection for all rodents and each host species, respectively. RESULTS: We detected T. cruzi in all host species in all study areas in New Orleans, but not in Baton Rouge. Though overall infection prevalence was 11%, it varied by study area and trapping site. There was no difference in prevalence by species, but roof rats exhibited the broadest geographical distribution of infection across the city. Infected rodents were trapped in densely populated neighborhoods like the French Quarter. Infection prevalence seasonally varied with abandonment, increasing with greater abandonment during the summer and declining with greater abandonment during the winter. CONCLUSIONS: Our findings illustrate that T. cruzi can be widespread in urban landscapes, suggesting that transmission and disease risk is greater than is currently recognized. Our findings also suggest that there is disproportionate risk of transmission in historically underserved communities, which could reinforce long-standing socioecological disparities in New Orleans and elsewhere.


Subject(s)
Chagas Disease/veterinary , Disease Reservoirs/parasitology , Rodent Diseases/epidemiology , Rodentia/parasitology , Animals , Mice , New Orleans/epidemiology , Prevalence , Rats , Sigmodontinae , Trypanosoma cruzi/isolation & purification
12.
Vaccine ; 38(29): 4584-4591, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32417142

ABSTRACT

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi is one of the most important neglected parasitic diseases in the Americas. Vaccines represent an attractive complementary strategy for the control of T. cruzi infection and pre-clinical studies in mice demonstrated that trypomastigote surface antigen (TSA-1) and the flagellar calcium-binding (Tc24) parasite antigens are promising candidates for vaccine development. We performed here the first evaluation of the safety and immunogenicity of two recombinant vaccine antigens (named TSA1-C4 and Tc24-C4) in naïve non-human primates. Three rhesus macaques received 3 doses of each recombinant protein, formulated with E6020 (Eisai Co., Ltd.), a novel Toll-like receptor-4 agonist, in a stable emulsion. All parameters from blood chemistry and blood cell counts were stable over the course of the study and unaffected by the vaccine. A specific IgG response against both antigens was detectable after the first vaccine dose, and increased with the second dose. After three vaccine doses, stimulation of PBMCs with a peptide pool derived from TSA1-C4 resulted in the induction of TSA1-C4-specific TNFα-, IL-2- and IFNγ-producing CD4+ in one or two animals while stimulation with a peptide pool derived from Tc24-C4 only activated IFNγ-producing CD4+T cells in one animal. In two animals there was also activation of TSA1-C4-specific IL2-producing CD8+ T cells. This is the first report of the immunogenicity of T. cruzi-derived recombinant antigens formulated as an emulsion with a TLR4 agonist in a non-human primate model. Our results strongly support the need for further evaluation of the preventive efficacy of this type of vaccine in non-human primates and explore the effect of the vaccine in a therapeutic model of naturally-infected Chagasic non-human primates, which would strengthen the rationale for the clinical development as a human vaccine against Chagas disease.


Subject(s)
Chagas Disease , Protozoan Vaccines , Trypanosoma cruzi , Animals , Antigens, Protozoan , CD8-Positive T-Lymphocytes , Chagas Disease/prevention & control , Macaca mulatta , Mice , Vaccines, Synthetic
13.
Parasit Vectors ; 12(1): 322, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31238941

ABSTRACT

BACKGROUND: Chagas disease is a zoonotic disease caused by the protozoan parasite Trypanosoma cruzi. The role of dogs as sentinels has been proposed in multiple regions, as they are a domestic reservoir for T. cruzi. Our objective was to determine the prevalence of T. cruzi infection in shelter dogs from southern Louisiana, and assess its magnitude and distribution. RESULTS: A total of 540 dogs were enrolled, from 20 animal shelters, and tested for T. cruzi infection by serological tests (rapid test, ELISA and western blot) and PCR. We documented a high prevalence of T. cruzi infection with at least 6.9% (95% CI: 5.0-9.3%) seropositive and 15.7% (95% CI: 12.9-19.1%) PCR-positive dogs. Serological tests showed limited agreement, and concordance between serology and PCR was higher when considering reactivity to single serological tests. Trypanosoma cruzi infection was distributed evenly among shelters. Infection was significantly correlated with age (R2 = 0.99), indicating an incidence of new cases of 2.27 ± 0.25% per year. CONCLUSION: Trypanosoma cruzi infection is a significant and widespread veterinary problem in shelter dogs in the region, although it is mostly unnoticed by health professionals. This highlights the need for greater awareness of T. cruzi infection among the veterinary community and dog owners.


Subject(s)
Chagas Disease/veterinary , Dog Diseases/epidemiology , Dogs/parasitology , Animals , Antibodies, Protozoan/blood , Chagas Disease/epidemiology , Dog Diseases/parasitology , Enzyme-Linked Immunosorbent Assay , Female , Louisiana/epidemiology , Male , Prevalence , Serologic Tests , Trypanosoma cruzi/genetics , Trypanosoma cruzi/isolation & purification
14.
Mol Brain ; 7: 71, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25269856

ABSTRACT

BACKGROUND: Mutations in the human FOXP2 gene cause speech and language impairments. The FOXP2 protein is a transcription factor that regulates the expression of many downstream genes, which may have important roles in nervous system development and function. An adequate amount of functional FOXP2 protein is thought to be critical for the proper development of the neural circuitry underlying speech and language. However, how FOXP2 gene expression is regulated is not clearly understood. The FOXP2 mRNA has an approximately 4-kb-long 3' untranslated region (3' UTR), twice as long as its protein coding region, indicating that FOXP2 can be regulated by microRNAs (miRNAs). FINDINGS: We identified multiple miRNAs that regulate the expression of the human FOXP2 gene using sequence analysis and in vitro cell systems. Focusing on let-7a, miR-9, and miR-129-5p, three brain-enriched miRNAs, we show that these miRNAs regulate human FOXP2 expression in a dosage-dependent manner and target specific sequences in the FOXP2 3' UTR. We further show that these three miRNAs are expressed in the cerebellum of the human fetal brain, where FOXP2 is known to be expressed. CONCLUSIONS: Our results reveal novel regulatory functions of the human FOXP2 3' UTR sequence and regulatory interactions between multiple miRNAs and the human FOXP2 gene. The expression of let-7a, miR-9, and miR-129-5p in the human fetal cerebellum is consistent with their roles in regulating FOXP2 expression during early cerebellum development. These results suggest that various genetic and environmental factors may contribute to speech and language development and related neural developmental disorders via the miRNA-FOXP2 regulatory network.


Subject(s)
3' Untranslated Regions/genetics , Forkhead Transcription Factors/genetics , Gene Expression Regulation , MicroRNAs/metabolism , Base Sequence , Binding Sites/genetics , Cerebellum/embryology , Cerebellum/metabolism , Down-Regulation/genetics , Fetus/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Humans , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
Neuron ; 73(4): 774-88, 2012 Feb 23.
Article in English | MEDLINE | ID: mdl-22365550

ABSTRACT

EPAC proteins are the guanine nucleotide exchange factors that act as the intracellular receptors for cyclic AMP. Two variants of EPAC genes including EPAC1 and EPAC2 are cloned and are widely expressed throughout the brain. But, their functions in the brain remain unknown. Here, we genetically delete EPAC1 (EPAC1(-/-)), EPAC2 (EPAC2(-/-)), or both EPAC1 and EPAC2 genes (EPAC(-/-)) in the forebrain of mice. We show that EPAC null mutation impairs long-term potentiation (LTP) and that this impairment is paralleled with the severe deficits in spatial learning and social interactions and is mediated in a direct manner by miR-124 transcription and Zif268 translation. Knockdown of miR-124 restores Zif268 and hence reverses all aspects of the EPAC(-/-) phenotypes, whereas expression of miR-124 or knockdown of Zif268 reproduces the effects of EPAC null mutation. Thus, EPAC proteins control miR-124 transcription in the brain for processing spatial learning and social interactions.


Subject(s)
Early Growth Response Protein 1/metabolism , Guanine Nucleotide Exchange Factors/deficiency , Interpersonal Relations , Learning Disabilities/genetics , Learning Disabilities/psychology , MicroRNAs/metabolism , Analysis of Variance , Animals , Biophysics , Chromatin Immunoprecipitation , Corpus Striatum/metabolism , Corpus Striatum/pathology , Dendritic Spines/pathology , Dendritic Spines/ultrastructure , Disease Models, Animal , Early Growth Response Protein 1/genetics , Electric Stimulation , Exploratory Behavior/physiology , Gene Expression Profiling , Hippocampus/pathology , Hippocampus/ultrastructure , In Vitro Techniques , Learning Disabilities/pathology , Long-Term Potentiation/drug effects , Long-Term Potentiation/genetics , Long-Term Potentiation/physiology , Male , Maze Learning/physiology , Mice , Mice, Transgenic , MicroRNAs/genetics , Microscopy, Electron , Neurons/physiology , Oligonucleotide Array Sequence Analysis , Patch-Clamp Techniques , Protein Biosynthesis/genetics , Reaction Time/genetics , Signal Transduction/physiology , Silver Staining , Transfection , rap1 GTP-Binding Proteins/metabolism
16.
Stem Cells Dev ; 21(3): 411-22, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-21740234

ABSTRACT

Chronic intake of nicotine can impair hippocampal plasticity, but the underlying mechanism is poorly understood. Here, we demonstrate that chronic nicotine administration in adult rats inactivates the cyclic AMP-response element binding protein (CREB), a transcription factor that regulates neurogenesis and other plasticity-related processes necessary for learning and memory. Consequently, we showed that impaired CREB signaling is associated with a significant decline in the production of new neurons in the dentate gyrus. Combining retrovirus labeling with gene expression approaches, we found that chronic nicotine administration reduces the number of adult-generated granule neurons by decreasing the survival of newborn cells but not the proliferation of progenitor cells. Additionally, we found that retroviral-mediated expression of a constitutively active CREB in the dentate gyrus rescues survival of newborn cells and reverses the nicotine-induced decline in the number of mature granule neurons. Prolonged nicotine exposure also compromises CREB activation and reduces the viability of progenitor cells in vitro, thereby suggesting that nicotine may exert its adverse effects directly on immature cells in vivo. Taken together, these data demonstrate that inhibition of CREB activation is responsible for the nicotine-induced impairment of hippocampal plasticity.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Dentate Gyrus/cytology , Dentate Gyrus/drug effects , Nicotine/administration & dosage , Animals , Bromodeoxyuridine/administration & dosage , Cell Count , Cell Death , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Culture Media/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Dentate Gyrus/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/drug effects , Nicotine/adverse effects , Rats , Retroviridae/genetics , Retroviridae/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Transcriptional Activation , Transfection
17.
Cell ; 140(2): 222-34, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20141836

ABSTRACT

N-methyl-D-aspartate (NMDA) receptors constitute a major subtype of glutamate receptors at extrasynaptic sites that link multiple intracellular catabolic processes responsible for irreversible neuronal death. Here, we report that cerebral ischemia recruits death-associated protein kinase 1 (DAPK1) into the NMDA receptor NR2B protein complex in the cortex of adult mice. DAPK1 directly binds with the NMDA receptor NR2B C-terminal tail consisting of amino acid 1292-1304 (NR2B(CT)). A constitutively active DAPK1 phosphorylates NR2B subunit at Ser-1303 and in turn enhances the NR1/NR2B receptor channel conductance. Genetic deletion of DAPK1 or administration of NR2B(CT) that uncouples an activated DAPK1 from an NMDA receptor NR2B subunit in vivo in mice blocks injurious Ca(2+) influx through NMDA receptor channels at extrasynaptic sites and protects neurons against cerebral ischemic insults. Thus, DAPK1 physically and functionally interacts with the NMDA receptor NR2B subunit at extrasynaptic sites and this interaction acts as a central mediator for stroke damage.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Brain Ischemia/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Stroke/metabolism , Animals , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/genetics , Brain/metabolism , Brain/pathology , Brain Ischemia/drug therapy , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Cell Death , Death-Associated Protein Kinases , Mice , Neurons/cytology , Neurons/metabolism , Peptides/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Stroke/drug therapy , Stroke/pathology , tat Gene Products, Human Immunodeficiency Virus/genetics , tat Gene Products, Human Immunodeficiency Virus/metabolism
18.
Ageing Res Rev ; 9(1): 20-40, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19800420

ABSTRACT

Mitochondrial dysfunction and reactive oxygen species (ROS) production are at the heart of the aging process and are thought to underpin age-related diseases. Mitochondria are not only the primary energy-generating system but also the dominant cellular source of metabolically derived ROS. Recent studies unravel the existence of mechanisms that serve to modulate the balance between energy metabolism and ROS production. Among these is the regulation of proton conductance across the inner mitochondrial membrane that affects the efficiency of respiration and heat production. The field of mitochondrial respiration research has provided important insight into the role of altered energy balance in obesity and diabetes. The notion that respiration and oxidative capacity are mechanistically linked is making significant headway into the field of aging and age-related diseases. Here we review the regulation of cellular energy and ROS balance in biological systems and survey some of the recent relevant studies that suggest that respiratory adaptation and thermodynamics are important in aging and age-related diseases.


Subject(s)
Adaptation, Physiological , Aging/metabolism , Body Temperature Regulation/physiology , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Animals , Caloric Restriction , Cell Respiration , Diabetes Mellitus, Type 2/metabolism , Energy Metabolism , Humans , Ion Channels/metabolism , Mice , Mitochondrial Proteins/metabolism , Neurodegenerative Diseases/metabolism , Obesity/metabolism , Protons , Rats , Reactive Oxygen Species/metabolism , Uncoupling Protein 1
19.
Neuron ; 60(5): 803-17, 2008 Dec 10.
Article in English | MEDLINE | ID: mdl-19081376

ABSTRACT

Aberrant cell-cycle activity and DNA damage are emerging as important pathological components in various neurodegenerative conditions. However, their underlying mechanisms are poorly understood. Here, we show that deregulation of histone deacetylase 1 (HDAC1) activity by p25/Cdk5 induces aberrant cell-cycle activity and double-strand DNA breaks leading to neurotoxicity. In a transgenic model for neurodegeneration, p25/Cdk5 activity elicited cell-cycle activity and double-strand DNA breaks that preceded neuronal death. Inhibition of HDAC1 activity by p25/Cdk5 was identified as an underlying mechanism for these events, and HDAC1 gain of function provided potent protection against DNA damage and neurotoxicity in cultured neurons and an in vivo model for ischemia. Our findings outline a pathological signaling pathway illustrating the importance of maintaining HDAC1 activity in the adult neuron. This pathway constitutes a molecular link between aberrant cell-cycle activity and DNA damage and is a potential target for therapeutics against diseases and conditions involving neuronal death.


Subject(s)
Cyclin-Dependent Kinase 5/physiology , Histone Deacetylases/metabolism , Nerve Degeneration/enzymology , Animals , Animals, Newborn , Cell Cycle/physiology , Cells, Cultured , Cerebral Cortex/cytology , Chromatin Immunoprecipitation/methods , Chromobox Protein Homolog 5 , Comet Assay , Conditioning, Psychological/physiology , Cyclin-Dependent Kinase 5/genetics , DNA Breaks, Double-Stranded , DNA Damage/genetics , Fear/physiology , Gene Expression/genetics , Gene Expression Profiling/methods , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Histone Deacetylase 1 , Humans , Ischemia/pathology , Ki-67 Antigen/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Degeneration/genetics , Nerve Tissue/metabolism , Neurons/physiology , Proliferating Cell Nuclear Antigen/metabolism , Prosencephalon/metabolism , Rats , Transfection
20.
J Neurochem ; 103(5): 1982-8, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17883401

ABSTRACT

The Kir6.1 channels are a subtype of ATP-sensitive inwardly rectifying potassium (K(ATP)) channels that play an essential role in coupling the cell's metabolic events to electrical activity. In this study, we show that functional Kir6.1 channels are located at excitatory pre-synaptic terminals as a complex with type-1 Sulfonylurea receptors (SUR1) in the hippocampus. The mutant mice with deficiencies in expressing the Kir6.1 or the SUR1 gene are more vulnerable to generation of epileptic form of seizures, compared to wild-type controls. Whole-cell patch clamp recordings demonstrate that genetic deletion of the Kir6.1/SUR1 channels enhances glutamate release at CA3 synapses. Hence, expression of functional Kir6.1/SUR1 channels inhibits seizure responses and possibly acts via limiting excitatory glutamate release.


Subject(s)
Gene Expression Regulation/physiology , Glutamic Acid/metabolism , Hippocampus/cytology , Potassium Channels, Inwardly Rectifying/physiology , Seizures/etiology , Synapses/metabolism , Animals , Behavior, Animal , Excitatory Amino Acid Agonists/pharmacology , Hippocampus/metabolism , Humans , Immunoprecipitation/methods , In Vitro Techniques , KATP Channels , Kainic Acid/pharmacology , Male , Membrane Potentials/drug effects , Membrane Potentials/radiation effects , Mice , Mice, Knockout , Patch-Clamp Techniques/methods , Potassium Channels, Inwardly Rectifying/deficiency , Rats , Rats, Sprague-Dawley , Seizures/genetics , Seizures/physiopathology , Synapses/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...