Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Mol Graph Model ; 118: 108350, 2023 01.
Article in English | MEDLINE | ID: mdl-36194990

ABSTRACT

The dissolution and microscopic interactions of processed Polygonatum cyrtonema polysaccharides in water are extremely important because they strongly influence the process to extract these polysaccharides from water. In this paper, molecular dynamics simulation methods were used to analyse the influence of extraction temperature, concentration and molecular weight on the radial distribution function (RDF), mean square displacement (MSD), diffusion coefficient (D), radius of gyration (Rg), and microstructure of processed Polygonatum cyrtonema polysaccharides in water as well as the intrinsic viscosity (η), hydrogen bond characteristics and microscopic interactions in the solutions. The research results showed that the extraction temperature, concentration and molecular weight of the polysaccharides had important effects on the RDF, MSD, D, Rg, η, hydrogen bond characteristics and the microstructure of the polysaccharide molecules, but there were some major differences. The order of the influence of the factors affecting the dissolution of polysaccharides in water was temperature > concentration > molecular weight. Extraction temperature, material fluid ratio and molecular weight had greater influence on the fluidity and dissolution state of the polysaccharides in water. As the solute concentration and molecular weight increased, hydrogen bonds between polysaccharides and water inhibited their dissolution and diffusion. Properly increasing the temperature, reducing the concentration and selecting low molecular weight polysaccharides enhanced the dissolution and diffusion of the polysaccharides in the solution system. Molecular weight was the main factor affecting the η of the polysaccharide solutions. These results can provide theoretical guidance for the extraction or tea brewing process of Polygonatum cyrtonema polysaccharides in future work.


Subject(s)
Polygonatum , Polygonatum/chemistry , Water , Polysaccharides/chemistry , Molecular Weight , Temperature
2.
Methods Mol Biol ; 2297: 125-140, 2021.
Article in English | MEDLINE | ID: mdl-33656676

ABSTRACT

Photosynthesis is the most important chemical reaction on the earth, and about 60% of the CO2 is fixed by algae through photosynthesis. Photosynthetic organisms including algae experience half of the entire life in the dark due to diel cycles, and dark metabolism is critical and necessary for photosynthetic organisms to restart photosynthesis when receiving light again. Briefly, dark metabolism provides necessary materials and energy for restoring photosynthesis, reoxidizes NADH to form NAD+, rationally stores photosynthates, and maintains correct redox balance. Chlamydomonas reinhardtii grows under both autotrophic and heterotrophic conditions, making it an ideal organism to study photosynthesis, dark metabolism, and light dark transitions as well. In addition, it provides a good model to identify key molecular components and elucidate the molecular regulatory mechanisms of heterotrophic, which provides new clues to understand how photosynthetic organisms restart photosynthesis from the dark. Chlamydomonas mutants with dark growth deficiency or slower growth phenotypes are likely caused by the inefficient uptake and transport of acetate, the damaged proteins of mitochondrial electron transport chain, the malfunctioned mitochondrion, the redox state alteration in the dark or failed communication between mitochondrion and other organelles, the imbalanced redox or the disrupted distribution of the photosynthetic products. Here we summarize the methods and strategies for analyzing these mutants in Chlamydomonas reinhardtii.


Subject(s)
Bacteriological Techniques/methods , Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/metabolism , Chlorophyll/metabolism , Chloroplasts/metabolism , Culture Media , Darkness , Fluorescence , Heterotrophic Processes , Light , Mitochondrial Proteins/metabolism , Oxidation-Reduction , Oxygen/metabolism , Oxygen Consumption , Phenotype , Photosynthesis
3.
Plant J ; 104(6): 1724-1735, 2020 12.
Article in English | MEDLINE | ID: mdl-33085804

ABSTRACT

Neoxanthin (Neo), which is only bound to the peripheral antenna proteins of photosystem (PS) II, is a conserved carotenoid in all green plants. It has been demonstrated that Neo plays an important role in photoprotection and its deficiency fails to impact LHCII stability in vitro and indoor plant growth in vivo. Whether Neo is involved in maintaining the PSII complex structure or adaptive mechanisms for the everchanging environment has not yet been elucidated. In this study, the role of Neo in maintaining the structure and function of the PSII-LHCII supercomplexes was studied using Neo deficient Arabidopsis mutants. Our results show that Neo deficiency had little effect on the electron transport capacity and the plant fitness, but the PSII-LHCII supercomplexes were significantly impacted by the lack of Neo. In the absence of Neo, the M-type LHCII trimer cannot effectively associate with the C2 S2 -type PSII-LHCII supercomplexes even in moderate light conditions. Interestingly, Neo deficiency also leads to decreased PSII protein phosphorylation but rapid transition from state 1 to state 2. We suggest that Neo might enforce the interactions between LHCII and the minor antennas and that the absence of Neo makes M-type LHCII disassociate from the PSII complex, leading to the disassembly of the PSII-LHCII C2 S2 M2 supercomplexes, which results in alterations in the phosphorylation patterns of the thylakoid photosynthetic proteins and the kinetics of state transition.


Subject(s)
Arabidopsis/metabolism , Photosystem II Protein Complex/metabolism , Xanthophylls/metabolism , Arabidopsis/physiology , Arabidopsis/ultrastructure , Kinetics , Microscopy, Electron, Transmission , Phosphorylation , Photosynthesis , Photosystem II Protein Complex/physiology , Thylakoids/metabolism , Thylakoids/ultrastructure
4.
J Plant Physiol ; 251: 153189, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32526555

ABSTRACT

Throughout 3.5 billion years of evolution, photosynthesis of land plants has developed a complicated antenna system to cope with the ever-changing environments. The antenna system of photosystem (PS) II includes the outer antennae and inner antennae. The inner antennae CP43 and CP47, located in the closest peripheral of PSII reaction center (RC), play important roles in facilitating excitation energy transport from the outer antennae to the PSII RC. Although PSII RC is the last station of energy transport, it is the inner antenna CP47, not the RC, which possesses the lowest energy level in PSII. Berteroa incana (B. incana), which is a vascular plant grown in the Gobi region, can sustain very high photosynthesis capacity under very high light conditions. It has been discovered that the thylakoid membrane of B. incana possesses a unique low fluorescence emission spectrum because the fluorescence emission of CP47 (695 nm) is the main fluorescence emission peak of PSII. In this paper, the thylakoid membrane, isolated from B. incana grown under a light condition of 100 µM photons m-2 s-1 and subjected to high light treatment (1600 µM photons m-2 s-1 for 1.5 h or 3 h) was employed for the research. It has been found that the high fluorescence emission of CP47 decreased remarkably upon exposure to the high light treatment. Further observation revealed that the drastic changes in the CP47 fluorescence emission were accompanied by a slight reduction in the amount of CP47 and an enhancement of the CP29-LHCII-CP24 assembly. It is proposed that CP47 enables the functional switch between the excitation energy transfer towards PSII RC, and the overexcitation quenching in the PSII core. Together with CP43, CP47 plays important roles in regulating excitation energy distribution in PSII core complexes.


Subject(s)
Adaptation, Physiological/genetics , Brassicaceae/physiology , Light-Harvesting Protein Complexes/genetics , Photosystem II Protein Complex/genetics , Sunlight , Brassicaceae/genetics , Light-Harvesting Protein Complexes/metabolism , Photosynthesis , Photosystem II Protein Complex/metabolism , Spectrometry, Fluorescence , Stress, Physiological , Sunlight/adverse effects , Thylakoids/metabolism
5.
J Colloid Interface Sci ; 523: 110-120, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29614420

ABSTRACT

The amino- and phosphorus-codoped (N,P-codoped) porous carbons derived from oil-tea shells were facilely fabricated through a combination of phosphoric acid (H3PO4) activation and amino (polyethylenimine, PEI) modification method. The as-synthesized carbon adsorbents were systematically characterized and evaluated for Cr(VI) removal in aqueous solutions. The relationship between adsorbent properties and adsorption behaviors was illustrated. Moreover, the influences of contact time, initial Cr(VI) concentration, pH, coexisting anions and temperature were also investigated. The adsorption behavior of Cr(VI) could be perfectly described by the pseudo-second-order kinetic model and Sips adsorption model. The maximum adsorption capacity of Cr(VI) on the carbon adsorbents synthesized in this work was 355.0 mg/g, and this excellent Cr(VI) capacity could be sustained with other coexisting anions. In addition to high surface area and suitable pore size distribution, the high Cr(VI) removal capacity is induced by rich heteroatoms incorporation and the Cr(VI) removal mechanism was clearly illustrated. Furthermore, the continuous column breakthrough experiment on obtained N,P-codoped carbon was conducted and well fitted by the Thomas model. This work revealed that PEI modification and P-containing groups could significantly enhance Cr(VI) adsorption capacity and make these N,P-codoped biomass-derived carbons potent adsorbents in practical water treatment applications.

6.
Plant Physiol ; 174(1): 86-96, 2017 May.
Article in English | MEDLINE | ID: mdl-28320865

ABSTRACT

The light-harvesting chlorophyll a/b complex of photosystem II (LHCII) is able to switch to multiple functions under different light conditions (i.e. harvesting solar energy for photosynthesis and dissipating excess excitation energy for photoprotection). The role of the different carotenoids bound to LHCII in regulating the structure and function of the complex is a long-lasting question in photosynthesis research. 9-cis-Neoxanthin (Nx) is one of the important carotenoids, which can only be found in the LHCIIs. High-resolution structural analysis of LHCII shows that Nx is located between different monomeric LHCIIs, with one side protruding into the lipid membrane. In this study, the various functional significances of this unique feature of Nx binding in LHCII are studied with the in vitro reconstituted LHCIIs both with and without Nx and the native complexes isolated either from wild-type Arabidopsis (Arabidopsis thaliana) or from its mutant aba4-3 lacking Nx Our results reveal that the binding of Nx affects the binding affinity of violaxanthin (Vx) to LHCII significantly. In the absence of Nx, Vx has a much higher binding affinity to trimeric LHCII. The strong coordination between Nx and Vx at the interfaces of adjacent monomers of LHCII plays an important role both in operating the xanthophyll cycle and in the transient modulation of nonphotochemical quenching.


Subject(s)
Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Xanthophylls/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Light , Mutation , Photosynthesis/genetics , Photosynthesis/radiation effects , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/radiation effects , Protein Binding/radiation effects , Spectrophotometry
7.
Biochim Biophys Acta ; 1857(1): 79-88, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26518385

ABSTRACT

The light-harvesting chlorophyll (Chl) a/b complex of photosystem (PS) II (LHCII) plays important roles in the distribution of the excitation energy between the two PSs in the thylakoid membrane during state transitions. In this process, LHCII, homo- or heterotrimers composed of Lhcb1-3, migrate between PSII and PSI depending on the phosphorylation status of Lhcb1 and Lhcb2. We have studied the mechanisms of the substrate recognition of a thylakoid threonine kinase using reconstituted site-directed trimeric Lhcb protein-pigment complex mutants. Mutants lacking the positively charged residues R/K upstream of phosphorylation site (Thr) in the N-terminal domain of Lhcb1 were no longer phosphorylated. Besides, the length of the peptide upstream of the phosphorylated site (Thr) is also crucial for Lhcb phosphorylation in vitro. Furthermore, the two N-terminal residues of Lhcb appear to play a key role in the phosphorylation kinetics because Lhcb with N-terminal RR was phosphorylated much faster than with RK. Therefore, we conclude that the substrate recognition of the LHCII kinase is determined to a large extent by the N-terminal sequence of the Lhcb proteins. The study provides new insights into the interactions of the Lhcb proteins with the LHCII kinase.


Subject(s)
Arabidopsis Proteins/physiology , Light-Harvesting Protein Complexes/metabolism , Light-Harvesting Protein Complexes/physiology , Protein Kinases/metabolism , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Chlamydomonas reinhardtii/enzymology , Light-Harvesting Protein Complexes/chemistry , Molecular Sequence Data , Phosphorylation , Protein Structure, Tertiary , Substrate Specificity
8.
J Plant Physiol ; 172: 33-41, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25047739

ABSTRACT

Leaves from three different Arabidopsis lines with different expression levels of PsbS protein showed different levels of non-photochemical quenching. The PsbS deficient plant npq4 showed remarkable reduction of electron transport rate, while the other two lines with a moderate amount (wild type) or an overexpression of PsbS (L17) presented unchanged electron transport rates under the same range of high light intensities. Biochemical investigation revealed that the plant with the highest PsbS content (L17) sustained the highest level of stable PSII-LHCII supercomplex structure, and displayed the smallest fluorescence quenching in the thylakoid membranes, the most efficient linear electron transport and the smallest cyclic electron transport. Based on these observations, it is proposed that the remodeling of PSII-LHCII supercomplexes affected by PsbS plays important roles in regulating the energy balance in thylakoid membrane and in ensuring the sophisticated coordination between energy excitation and dissipation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Light-Harvesting Protein Complexes/genetics , Light , Photosynthesis , Photosystem II Protein Complex/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Electron Transport , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Thylakoids/metabolism
9.
Front Plant Sci ; 6: 1189, 2015.
Article in English | MEDLINE | ID: mdl-26779223

ABSTRACT

Ephemerals, widely distributed in the Gobi desert, have developed significant characteristics to sustain high photosynthetic efficiency under high light (HL) conditions. Since the light reaction is the basis for photosynthetic conversion of solar energy to chemical energy, the photosynthetic performances in thylakoid membrane of the spring ephemerals in response to HL were studied. Three plant species, namely two C3 spring ephemeral species of Cruciferae: Arabidopsis pumila (A. pumila) and Sisymbrium altissimum (S. altissimum), and the model plant Arabidopsis thaliana (A. thaliana) were chosen for the study. The ephemeral A. pumila, which is genetically close to A. thaliana and ecologically in the same habitat as S. altissimum, was used to avoid complications arising from the superficial differences resulted from comparing plants from two extremely contrasting ecological groups. The findings manifested that the ephemerals showed significantly enhanced activities of photosystem (PS) II under HL conditions, while the activities of PSII in A. thaliana were markedly decreased under the same conditions. Detailed analyses of the electron transport processes revealed that the increased plastoquinone pool oxidization, together with the enhanced PSI activities, ensured a lowered excitation pressure to PSII of both ephemerals, and thus facilitated the photosynthetic control to avoid photodamage to PSII. The analysis of the reaction centers of the PSs, both in terms of D1 protein turnover kinetics and the long-term adaptation, revealed that the unusually stable PSs structure provided the basis for the ephemerals to carry out high photosynthetic performances. It is proposed that the characteristic photosynthetic performances of ephemerals were resulted from effects of the long-term adaptation to the harsh environments.

10.
J Plant Physiol ; 169(15): 1463-70, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22854181

ABSTRACT

Berteroa incana (B. incana), a spring ephemeral species of Brassicaceae, possesses very high photosynthetic capacities at high irradiances. Exploring the mechanism of the high light use efficiency of B. incana under strong light conditions may help to explore mechanisms of plants' survival strategies. Therefore, the photosynthetic characteristics of B. incana grown under three different light intensities (field conditions (field): 200-1500µmolphotonsm(-2)s(-1); greenhouse high light (HL) conditons: 600µmolphotonsm(-2)s(-1); and greenhouse low light (LL) conditions: 100µmolphotonsm(-2)s(-1)) were investigated and compared with those of the model plant Arabidopsis thaliana (A. thaliana). Our results revealed that B. incana behaved differently in adjusting its photosynthetic activities under both HL and LL conditions compared with what A. thaliana did under the same conditions, suggesting that the potential of photosynthetic capacity of B. incana might be enhanced under strong light conditions. Under LL conditions, B. incana reached its maximum photosynthetic activity at a much higher light intensity than A. thaliana did, although their maximum photochemical efficiency of photosystem II (PSII) (F(v)/F(m)) was almost the same. When grown under HL conditions, B. incana showed much higher photosynthetic capacity than A. thaliana. A detailed analysis of the OJIP transient kinetics of B. incana under HL and LL conditions revealed that HL-grown B. incana possessed not only a high ability in regulating photosystem stoichiometry that ensured high linear electron transport, but also an enhanced availability of oxidized plastoquinone (PQ) pool which reduced non-photochemical quenching (NPQ), especially its slow components qT and qI, and increased the photochemical efficiency, which in turn, increased the electron transport. We suggest that the high ability in regulating photosystem stoichiometry and the high level of the availability of oxidized PQ pool in B. incana under strong light conditions play important roles in its ability to retain higher photosynthetic capacity under extreme environmental conditions.


Subject(s)
Brassicaceae/physiology , Light , Photosynthesis/physiology , Acclimatization , Arabidopsis/physiology , Light-Harvesting Protein Complexes/metabolism
11.
J Plant Physiol ; 167(16): 1390-7, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20719403

ABSTRACT

The moss Syntrichia caninervis (S. caninervis) is one of the dominant species in biological soil crusts of deserts. It has long been the focus of scientific research because of its ecological value. Moreover, S. caninervis has a special significance in biogenesis research because it is characterized by its fast restoration of photosynthesis upon onset of rehydration of the desiccated organism. In order to study the mechanisms of rapid photosynthetic recovery in mosses upon rewatering, we investigated the kinetics of the recovery process of photosynthetic activity in photosystem (PS) II, with an indirect assessment of the photochemical processes based on chlorophyll (Chl) fluorescence measurements. Our results showed that recovery can be divided into two phases. The fast initial phase, completed within 3 min, was characterized by a quick increase in maximal quantum efficiency of PSII (F(v)/F(m)). Over 50% of the PSII activities, including excitation energy transfer, oxygen evolution, charge separation, and electron transport, recovered within 0.5 min after rehydration. The second, slow phase was dominated by the increase of plastoquinone (PQ) reduction and the equilibrium of the energy transport from the inner antenna to the reaction center (RC) of PSII. Analysis of the recovery process in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) revealed that blocking the electron transport from Q(A) to Q(B) did not hamper Chl synthesis or Chl organization in thylakoid membranes under light conditions. A de novo chloroplast protein synthesis was not necessary for the initial recovery of photochemical activity in PSII. In conclusion, the moss's ability for rapid recovery upon rehydration is related to Chl synthesis, quick structural reorganization of PSII, and fast restoration of PSII activity without de novo chloroplast protein synthesis.


Subject(s)
Bryophyta/metabolism , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Chlorophyll/metabolism , Electron Transport/physiology , Electrophoresis, Polyacrylamide Gel , Thylakoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...