Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(2): 1249-1260, 2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35209289

ABSTRACT

Short-wave infrared (SWIR) imaging polarimetry has widespread applications in telecommunication, medical imaging, surveillance, remote-sensing, and industrial metrology. In this work, we design, fabricate, and test an achromatic SWIR elliptical polarizer, which is a key component of SWIR imaging polarimetry. The elliptical polarizer is made of a patterned linear polarizer and a patterned optical elliptical retarder. The linear polarizer is a wire grid polarizer. The elliptical retarder is constructed with three layers of nematic phase A-plate liquid crystal polymer (LCP) films with different fast axis orientations and physical film thicknesses. For each LCP layer, four arrays of hexagonal patterns with individual fast-axis orientations are realized utilizing selective linearly polarized ultraviolet (UV) irradiation on a photo-alignment polymer film. The Mueller matrices of the optical filters were measured in the wavelength range 1000 nm to 1600 nm and compared with theory. Our results demonstrate the functionality and quality of the patterned retarders with normalized analyzer vector parameter deviation below 7% over this wavelength range. To the best of our knowledge, this work represents the first polymer-based patterned elliptical polarizer for SWIR polarimetry imaging applications.

2.
Appl Opt ; 60(6): 1500-1507, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33690481

ABSTRACT

The patternability and guest-host interaction with dichroic dye and C-plate liquid crystal polymer (LCP) materials are investigated, and the optical properties of a thin film C-plate retarder and polarizer are studied and compared with theory. The C-plate retarder is a waveplate made of a uniaxial LCP where the optical axis of the LCP is parallel to the surface normal of the optic. No retardance is observed at a normal angle of incidence and retardance grows as the angle of incidence increases. The C-plate polarizer is a C-plate retarder with LCP as the host and a dichroic dye as the guest. The linear diattenuation (LD) of the linear polarizer is zero at a normal angle of incidence and grows with an increasing angle of incidence. Both the C-plate retarder and polarizer can be patterned with minimum feature size down to 2 µm by using ultraviolet photolithography and plasma etching. A planarization process is also developed to deposit a cover layer on top of the pattern to reduce optical loss and to serve as a barrier for subsequent layers.

3.
Appl Opt ; 59(22): G33-G40, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32749314

ABSTRACT

We calibrate and test a division-of-focal-plane red-green-blue (RGB) full-Stokes imaging polarimeter in a variety of indoor and outdoor environments. The polarimeter, acting as a polarization camera, utilizes a low dispersion microretarder array on top of a sensor with Bayer filters and wire-grid linear polarizers. We also present the design and fabrication of the microretarder array and the assembly of the camera and validate the performance of the camera by taking multiple RGB full-Stokes images and videos. Our camera has a small form factor due to its single-sensor design and the unique capability to measure the intensity, color, and polarization of an optical field in a single shot.

4.
Sci Rep ; 10(1): 8725, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457303

ABSTRACT

Bubbles are ubiquitous in the natural environment, where different substances and phases of the same substance forms globules due to differences in pressure and surface tension. Total internal reflection occurs at the interface of a bubble, where light travels from the higher refractive index material outside a bubble to the lower index material inside a bubble at appropriate angles of incidence, which can lead to a phase shift in the reflected light. Linearly polarized skylight can be converted to elliptically polarized light with efficiency up to 53% by single scattering from the water-air interface. Total internal reflection from air bubble in water is one of the few sources of elliptical polarization in the natural world. Stationary and dynamic scenes of air bubbles in water in both indoor and outdoor settings are studied using an imaging polarimeter. Our results are important for studies in fluid dynamics, remote sensing, and polarimetry.

5.
Opt Express ; 27(11): 16258-16270, 2019 May 27.
Article in English | MEDLINE | ID: mdl-31163806

ABSTRACT

A method of designing an arbitrary polarizing beam splitter (PBS) cube using multiple layers of thin-film liquid crystal polymer is demonstrated. This methodology utilizes cholesteric phase liquid crystal polymer (Ch-LCP) to transmit one handedness of elliptically polarized light and reflect the orthogonal state when unpolarized light is incident. Using additional nematic liquid crystal polymer layers, the polarization state for the transmitted and reflected light can be controlled and output to any two orthogonal states represented on the Poincaré sphere. Two cubes are designed, fabricated, tested, and compared with theory. One cube is constructed with a single layer of Ch-LCP, and another cube is constructed with a layer of Ch-LCP and an additional nematic liquid crystal polymer layer.

6.
Biomed Opt Express ; 10(4): 1638-1648, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31061760

ABSTRACT

We introduce a snapshot multi-wavelength quantitative polarization and phase microscope (MQPPM) for measuring spectral dependent quantitative polarization and phase information. The system uniquely integrates a polarized light microscope and a snap-shot quantitative phase microscope in a single system, utilizing a novel full-Stokes camera operating in the red, green, and blue (RGB) spectrum. The linear retardance and fast axis orientation of a birefringent sample can be measured simultaneously in the visible spectra. Both theoretical analysis and experiments have been performed to demonstrate the capability of the proposed microscope. Data from liquid crystal and different biological samples are presented. We believe that MQPPM will be a useful tool in measuring quantitative polarization and phase information of live cells.

7.
Opt Express ; 26(14): 18279-18291, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-30114009

ABSTRACT

A snapshot multi-wavelength interference microscope is proposed for high-speed measurement of large vertical range discontinuous microstructures and surface roughness. A polarization CMOS camera with a linear micro-polarizer array and Bayer filter accomplishes snapshot multi-wavelength phase-shifting measurement. Four interferograms with 𝜋/2 phase shift are captured at each wavelength for phase measurement, the 2𝜋 ambiguities are removed by using two or three wavelengths.

8.
Opt Express ; 26(4): 4192-4193, 2018 02 19.
Article in English | MEDLINE | ID: mdl-29475271

ABSTRACT

We correct two figures showing the micro-polarizer arrangement on the RGB full-Stokes camera.

9.
Opt Express ; 25(9): 10355-10367, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28468408

ABSTRACT

A method of designing achromatic elliptical polarizers using a combination of multiple birefringent waveplates is demonstrated. This approach has a simple geometric interpretation and simplifies the problem of designing an achromatic elliptical polarizer to find overlapping arcs on the Poincaré sphere. The technique is applied to the design of achromatic elliptical polarizers for a broadband division-of-focal-plane full-Stokes imaging polarimeter for visible wavelength band (λ = 450nm to 650nm). An achromatic elliptical polarizer sample with a two-layer retarder is fabricated using liquid crystal polymer. The performance of the polarizer sample is measured and compared with the theoretical calculation. For comparison, a superachromatic polarizer design (λ = 400nm to 1µm) is also presented by using three-layer and four-layer retarder configurations.

10.
Opt Express ; 24(3): 3011-24, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26906867

ABSTRACT

Designs of N optical filters for color and polarization imaging are found by minimizing detector noise, photon shot noise, and interpolation error for the image acquisition in a division of focal plane configuration. To minimize interpolation error, a general tiling procedure and an optimized tiling pattern for N filters are presented. For multispectral imaging, a general technique to find the transmission band is presented. For full Stokes polarization imaging, the general design with optimized retardances and fast angles of the polarizers is compared with the solution of the Thomson problem. These results are applied to the design of a three-color full Stokes imaging camera.

SELECTION OF CITATIONS
SEARCH DETAIL
...