Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tohoku J Exp Med ; 263(2): 141-150, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38522897

ABSTRACT

Warming Yang promoting blood circulation and diuresis (WYPBD) has been proven effective in treating some diseases. This study aimed to evaluate therapeutic effect of WYPBD in treating chronic heart failure (CHF). CHF rats were established by intraperitoneally injecting doxorubicin (DOX). Therapeutic effects of WYPBD on cardiac function and hemodynamic parameters of myocardial tissues were analyzed. Collagen fiber production and myocardial fibrosis were evaluated. Transcriptions of COL1A1 gene, COL3A1 gene, and TGFB1 gene were evaluated with RT-PCR. Expression of BNP, AVP, PARP, caspase-3, and Bcl-2 in myocardial tissues were evaluated. TUNEL assay was used to identify apoptosis of cardiomyocytes. WYPBD alleviated degree of myocardial hypertrophy in CHF rats compared to the rats in CHF model group (P < 0.05). WYPBD significantly improved cardiac hemodynamics (increased LVEF and LVSF) of CHF rats compared to rats in the CHF model group (P < 0.05). WYPBD protected myocardial structure and inhibited collagen fiber production in myocardial tissues of CHF rats. WYPBD markedly decreased myocardial fibrosis mediators (Col1α, Col3α, TGF-ß1) transcription in myocardial tissues of CHF rats compared to rats in CHF model group (P < 0.05). WYPBD significantly reduced BNP and AVP expression in myocardial tissues of CHF rats compared to rats in the CHF model group (P < 0.05). WYPBD markedly reduced the expression of PRAP and caspase-3, and increased Bcl-2 expression in myocardial tissues of CHF rats compared to rats in the CHF model group (P < 0.05). In conclusion, WYPBD alleviated CHF myocardial damage by inhibiting collagen fiber and myocardial fibrosis, attenuating apoptosis associated with the mitochondria signaling pathway of cardiomyocytes.


Subject(s)
Apoptosis , Diuresis , Fibrosis , Heart Failure , Hemodynamics , Myocardium , Rats, Sprague-Dawley , Signal Transduction , Animals , Heart Failure/pathology , Heart Failure/physiopathology , Apoptosis/drug effects , Signal Transduction/drug effects , Male , Myocardium/pathology , Myocardium/metabolism , Hemodynamics/drug effects , Diuresis/drug effects , Collagen/metabolism , Chronic Disease , Mitochondria/metabolism , Mitochondria/drug effects , Transforming Growth Factor beta1/metabolism , Natriuretic Peptide, Brain/metabolism , Natriuretic Peptide, Brain/blood , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Rats
2.
Chin J Integr Med ; 30(2): 107-114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37222827

ABSTRACT

OBJECTIVE: To evaluate the efficacy and safety of Huashi Baidu Granules (HSBD) in treating patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant. METHODS: A single-center retrospective cohort study was conducted during COVID-19 Omicron epidemic in the Mobile Cabin Hospital of Shanghai New International Expo Center from April 1st to May 23rd, 2022. All COVID-19 patients with asymptomatic or mild infection were assigned to the treatment group (HSBD users) and the control group (non-HSBD users). After propensity score matching in a 1:1 ratio, 496 HSBD users of treatment group were matched by propensity score to 496 non-HSBD users. Patients in the treatment group were administrated HSBD (5 g/bag) orally for 1 bag twice a day for 7 consecutive days. Patients in the control group received standard care and routine treatment. The primary outcomes were the negative conversion time of nucleic acid and negative conversion rate at day 7. Secondary outcomes included the hospitalized days, the time of the first nucleic acid negative conversion, and new-onset symptoms in asymptomatic patients. Adverse events (AEs) that occurred during the study were recorded. Further subgroup analysis was conducted in vaccinated (378 HSBD users and 390 non-HSBD users) and unvaccinated patients (118 HSBD users and 106 non-HSBD users). RESULTS: The median negative conversion time of nucleic acid in the treatment group was significantly shortened than the control group [3 days (IQR: 2-5 days) vs. 5 days (IQR: 4-6 days); P<0.01]. The negative conversion rate of nucleic acid in the treatment group were significantly higher than those in the control group at day 7 (91.73% vs. 86.90%, P=0.014). Compared with the control group, the hospitalized days in the treatment group were significantly reduced [10 days (IQR: 8-11 days) vs. 11 days (IQR: 10.25-12 days); P<0.01]. The time of the first nucleic acid negative conversion had significant differences between the treatment and control groups [3 days (IQR: 2-4 days) vs. 5 days (IQR: 4-6 days); P<0.01]. The incidence of new-onset symptoms including cough, pharyngalgia, expectoration and fever in the treatment group were lower than the control group (P<0.05 or P<0.01). In the vaccinated patients, the median negative conversion time and hospitalized days were significantly shorter than the control group after HSDB treatment [3 days (IQR: 2-5 days) vs. 5 days (IQR: 4-6 days), P<0.01; 10 days (IQR: 8-11 days) vs. 11 days (IQR: 10-12 days), P<0.01]. In the unvaccinated patients, HSBD treatment efficiently shorten the median negative conversion time and hospitalized days [4 days (IQR: 2-6 days) vs. 5 days (IQR: 4-7 days), P<0.01; 10.5 days (IQR: 8.75-11 days) vs. 11.0 days (IQR: 10.75-13 days); P<0.01]. No serious AEs were reported during the study. CONCLUSION: HSBD treatment significantly shortened the negative conversion time of nuclear acid, the length of hospitalization, and the time of the first nucleic acid negative conversion in patients infected with SARS-COV-2 Omicron variant (Trial registry No. ChiCTR2200060472).


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Nucleic Acids , Humans , SARS-CoV-2 , Retrospective Studies , China
SELECTION OF CITATIONS
SEARCH DETAIL
...