Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 216: 115788, 2023 10.
Article in English | MEDLINE | ID: mdl-37683841

ABSTRACT

Non-small cell lung carcinomas (NSCLCs) commonly harbor activating mutations in the epidermal growth factor receptor (EGFR). Drugs targeting the tyrosine kinase activity of EGFR have shown effectiveness in inhibiting the growth of cancer cells with EGFR mutations. However, the development of additional mutations in cancer cells often leads to the persistence of the disease, necessitating alternative strategies to overcome this challenge. We explored the efficacy of stabilizing the G-quadruplex structure formed in the promoter region of EGFR as a means to suppress its expression and impede the growth of cancer cells with EGFR mutations. We revealed that the carbazole derivative BMVC-8C3O effectively suppressed EGFR expression and demonstrated significant growth inhibition in EGFR-mutated NSCLC cells, both in cell culture and mouse xenograft models. Importantly, the observed repression of EGFR expression and growth inhibition were not exclusive to carbazole derivatives, as several other G-quadruplex ligands exhibited similar effects. The growth-inhibitory activity of BMVC-8C3O is attributed, at least in part, to the repression of EGFR, although it is possible that additional cellular targets are also affected. Remarkably, the growth-inhibitory effect was observed even in osimertinib-resistant cells, indicating that BMVC-8C3O holds promise for treating drug-resistant NSCLC. Our findings present a promising and innovative approach for inhibiting the growth of NSCLC cells with EGFR mutations by effectively suppressing EGFR expression. The demonstrated efficacy of G-quadruplex ligands in this study highlights their potential as candidates for further development in NSCLC therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/pathology , Cell Line, Tumor , ErbB Receptors/metabolism , Mutation , Carbazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm , Aniline Compounds/pharmacology
2.
J Natl Cancer Inst ; 115(11): 1383-1391, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37481710

ABSTRACT

BACKGROUND: Osimertinib is the first-line therapy for patients with non-small cell lung cancer harboring epidermal growth factor receptor-activating alterations. Although osimertinib has been shown to elicit profound patient responses, cancer cells frequently develop additional alterations that sustain their proliferation capacity. This acquired resistance represents a substantial hurdle in precision medicine for patients with lung cancer. METHODS: The biological and cellular properties of the G-quadruplex ligand BMVC-8C3O and its anticancer activities were evaluated in non-small cell lung carcinomas. In addition, combined treatment with BMVC-8C3O and osimertinib was evaluated for its effects on the growth of osimertinib-resistant tumors in vivo. RESULTS: We demonstrate that BMVC-8C3O effectively suppresses c-FOS expression by stabilizing G-rich sequences located at the c-FOS promoter. The suppression c-FOS expression by BMVC-8C3O increases the sensitivity of acquired resistant cancer cells to osimertinib. Combining BMVC-8C3O and osimertinib has a synergistic effect in inhibiting the growth of acquired resistant cancers both in vitro and in mouse models. The combined inhibitory effect is not limited to BMVC-8C3O, either: several G-quadruplex ligands show varying levels of inhibition activity. We also show that simultaneous inhibition of both the c-FOS and PI3K/AKT pathways by BMVC-8C3O and osimertinib synergistically inhibits the growth of acquired resistant cancer cells. CONCLUSION: These findings unveil a synthetic lethal strategy to prevent and inhibit epidermal growth factor receptor-altered lung cancers with acquired osimertinib resistance. G-quadruplex ligands have the potential to be integrated into current osimertinib-based treatment regimens.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm , ErbB Receptors/genetics , Ligands , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Phosphatidylinositol 3-Kinases/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism
3.
J Asian Nat Prod Res ; 25(5): 471-483, 2023 May.
Article in English | MEDLINE | ID: mdl-35852140

ABSTRACT

This study was to investigate three agents possible protective effect against DM-induced cardiovascular dysfunction in spontaneously hypertensive rats (SHR). Control group was fed normal diet, DM group was injected with STZ/NA and fed high fat diet (HFD), and treatment groups were given STZ/NA, fed HFD, and then oral gavaged with eugenosedin-A (Eu-A), glibenclamide (Gli), or pioglitazone (Pio) 5 mg/kg/per day for 4-week, respectively. Eu-A, Gli, and Pio clearly ameliorated the changes of body weight, cardiac weight, and the biochemical parameters, cardiovascular disorders and inflammation. Like Gli and Pio, Eu-A may be effectively to control DM and the cardiovascular dysfunction.


Subject(s)
Diabetes Mellitus, Experimental , Glyburide , Rats , Animals , Pioglitazone/adverse effects , Rats, Inbred SHR , Glyburide/adverse effects , Hypoglycemic Agents/pharmacology , Rats, Sprague-Dawley , Diabetes Mellitus, Experimental/drug therapy
4.
J Clin Biochem Nutr ; 70(3): 248-255, 2022 May.
Article in English | MEDLINE | ID: mdl-35692676

ABSTRACT

In past researches, we had been proved the action mechanism of pre-germinated brown rice (PGBR) to treat metabolic syndrome and diabetes mellitus. This study was to investigate the protective effect of PGBR in high fructose and high fat-induced non-alcoholic fatty liver disease (NAFLD) in rodents. WKY rats were divided into: Control group was fed normal drinking water and diet; FLD group was fed 10% high-fructose-water (HFW) and high-fat-diet (HFD); PGBR group was given HFW, and HFD mixed PGBR. After four weeks, the body, hepatic and cardiac weight gains of FLD group had significant increases than that of Control group. The enhanced blood pressure and heart rate, hypertriglyceridemia, hyperuricemia, and higher liver function index (GPT levels) were observed; meanwhile, the IL-6 and TNF-α levels of serum, and TG level of liver were also elevated in FLD group. The related protein expressions of lipid synthesis, inflammation, cardiac fibrosis, and hypertrophy were deteriorated by HFW/HFD. However, in treatment group, PGBR decreased all above influenced parameters, additionally GOT; and related protein expressions. PGBR treated HFW/HFD-induced NAFLD and cardiac complications might be via improving lipid homeostasis, and inhibiting inflammation. Together, PGBR could be used as a healthy food for controlling NAFLD and its' cardiac dysfunction.

5.
J Pharm Pharmacol ; 73(6): 835-845, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33779726

ABSTRACT

OBJECTIVES: Eugenosedin-A (Eu-A), an adrenergic and serotonergic antagonist, is known to have anti-metabolic syndrome effects. In this study, we evaluated its protective effects against diabetes mellitus (DM) in spontaneous hypertensive rats (SHR) and compared it with two anti-diabetes medications, glibenclamide (Gli) and pioglitazone (Pio). METHODS: We divided 10-week-old SHRs into five groups: a control group fed a normal diet; an untreated DM group induced by injecting the SHRs with STZ/NA and feeding them a high-fat diet (HFD); and three treated groups (after giving STZ/NA and HFD) gavage given with Eu-A, Gli or Pio (5 mg/kg per day) for 4 weeks. KEY FINDINGS: The untreated DM group weighed less and had hyperglycaemia, hypoinsulinemia and hyperlipidemia. They were also found to have aberrant glucose-dependent insulin pathways, glucose metabolism and lipid synthesis proteins, while the controls did not. Eu-A, Gli and Pio ameliorated the above biochemical parameters in the treatment groups. Eu-A and Pio, but not Gli, improved hypertension and tachycardia. CONCLUSIONS: Taken together, Eu-A ameliorated DM, hypertension and tachycardia by improving glucose, lipid homeostasis and anti-adrenergic, serotonergic activities. We concluded that Eu-A could be used in the development of an effective agent for controlling DM and its complications.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Piperazines/pharmacology , Animals , Blood Glucose/drug effects , Diabetes Mellitus, Experimental/physiopathology , Diet, High-Fat , Glyburide/pharmacology , Hypertension/drug therapy , Insulin/metabolism , Male , Pioglitazone/pharmacology , Rats , Rats, Inbred SHR , Rats, Sprague-Dawley , Streptozocin
6.
Sensors (Basel) ; 14(1): 170-87, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24361929

ABSTRACT

We report a novel design wherein high-refractive-index zinc oxide (ZnO) intermediary layers are used in anti-symmetrically structured surface plasmon resonance (SPR) devices to enhance signal quality and improve the full width at half maximum (FWHM) of the SPR reflectivity curve. The surface plasmon (SP) modes of the ZnO intermediary layer were excited by irradiating both sides of the Au film, thus inducing a high electric field at the Au/ZnO interface. We demonstrated that an improvement in the ZnO (002) crystal orientation led to a decrease in the FWHM of the SPR reflectivity curves. We optimized the design of ZnO thin films using different parameters and performed analytical comparisons of the ZnO with conventional chromium (Cr) and indium tin oxide (ITO) intermediary layers. The present study is based on application of the Fresnel equation, which provides an explanation and verification for the observed narrow SPR reflectivity curve and optical transmittance spectra exhibited by (ZnO/Au), (Cr/Au), and (ITO/Au) devices. On exposure to ethanol, the anti-symmetrically structured showed a huge electric field at the Au/ZnO interface and a 2-fold decrease in the FWHM value and a 1.3-fold larger shift in angle interrogation and a 4.5-fold high-sensitivity shift in intensity interrogation. The anti-symmetrically structured of ZnO intermediate layers exhibited a wider linearity range and much higher sensitivity. It also exhibited a good linear relationship between the incident angle and ethanol concentration in the tested range. Thus, we demonstrated a novel and simple method for fabricating high-sensitivity, high-resolution SPR biosensors that provide high accuracy and precision over relevant ranges of analyte measurement.


Subject(s)
Biosensing Techniques/methods , Chromium/chemistry , Surface Plasmon Resonance/methods , Zinc Oxide/chemistry
7.
J Agric Food Chem ; 55(24): 9969-76, 2007 Nov 28.
Article in English | MEDLINE | ID: mdl-17973448

ABSTRACT

Atherosclerosis is a chronic inflammatory disease of the arterial wall. Kaempferol and rhamnocitrin (kaempferol 7-O-methyl ether) are two anti-inflammatory flavonoids commonly found in plants. The aim of this study is to investigate the function of kaempferol and rhamnocitrin on prevention of atherosclerosis. Chemical analyses demonstrated that kaempferol and rhamnocitrin were scavengers of DPPH (1,1-diphenyl-2-picrylhydrazyl) with IC50 of 26.10 +/- 1.33 and 28.38 +/- 3.07 microM, respectively. Copper-induced low-density lipoprotein (LDL) oxidation was inhibited by kaempferol and rhamnocitrin, with similar potency, as measured by decreased formation of malondialdehyde and relative electrophoretic mobility (REM) on agarose gel, while rhamnocitrin reduced delayed formation of conjugated dienes better than kaempferol. Cholesterol-laden macrophages are the hallmark of atherogenesis. The class B scavenger receptor, CD36, binds oxidized low-density lipoprotein (oxLDL), is found in atherosclerotic lesions, and is up-regulated by oxLDL. Addition of kaempferol and rhamnocitrin (20 microM) caused significant reductions in cell surface CD36 protein expression in THP-1-derived macrophages (p < 0.05). Reverse transcription quantitative PCR (RT-Q-PCR) showed that kaempferol and rhamnocitrin (20 microM) decreased oxLDL-induced CD36 mRNA expression (p < 0.01 and p < 0.05, respectively). Kaempferol- and rhamnocitrin-treated macrophages also showed reduction in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanide perchlorate (DiI)-labeled oxLDL uptake. Current evidences indicate that kaempferol and rhamnocitrin not only protect LDL from oxidation but also prevent atherogenesis through suppressing macrophage uptake of oxLDL.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Atherosclerosis/prevention & control , Kaempferols/administration & dosage , Kaempferols/chemistry , Macrophages/metabolism , Anti-Inflammatory Agents/chemistry , Biphenyl Compounds , CD36 Antigens/genetics , CD36 Antigens/metabolism , Dose-Response Relationship, Drug , Flavonoids/administration & dosage , Flavonoids/chemistry , Gene Expression , Humans , Inhibitory Concentration 50 , Lipid Peroxidation/drug effects , Lipoproteins, LDL/metabolism , Oxidation-Reduction , Picrates/metabolism , RNA, Messenger/metabolism
8.
J Agric Food Chem ; 55(26): 10579-84, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18038974

ABSTRACT

Several antioxidant compounds have been previously identified from sword brake fern (Pteris ensiformis Burm.) by DPPH bleaching and Trolox equivalent antioxidant capacity (TEAC) analyses. Among the isolates, 7-O-caffeoylhydroxymaltol 3-O-beta-D-glucopyranoside and hispidin 4-O-beta- D-glucopyranoside [6-(3,4-dihydroxystyryl)-4-O-beta-D-glucopyranoside-2-pyrone] were two new compounds. The aim of this study is to elucidate the possible effect of the aqueous extract of sword brake fern (SBF) and these two compounds in preventing atherosclerosis. The results demonstrated that SBF and these two compounds strongly inhibited Cu2+-mediated low-density lipoprotein (LDL) oxidation measured by thiobarbituric acid-reactive substances assay (TBARS), conjugated diene production, and relative electrophoretic mobility. The commercial antioxidant dl-alpha-tocopherol showed lower antioxidant activity than these two compounds at the same molecular concentration. SBF and these two compounds also suppressed N-formylmethionyl-leucylphenylalanine (fMLP)-stimulated reactive oxygen species (ROS) production in human polymorphonuclear neutrophils (PMN). These findings indicate that sword brake fern may prevent atherosclerosis via inhibition of both LDL oxidation and ROS production.


Subject(s)
Caffeic Acids/pharmacology , Lipid Peroxidation/drug effects , Neutrophils/physiology , Pteris/chemistry , Pyrones/pharmacology , Respiratory Burst/drug effects , Caffeic Acids/isolation & purification , Humans , Lipoproteins, LDL/blood , Neutrophils/drug effects , Pyrones/isolation & purification , Reactive Oxygen Species/blood
9.
J Agric Food Chem ; 54(26): 9798-804, 2006 Dec 27.
Article in English | MEDLINE | ID: mdl-17177504

ABSTRACT

The antioxidant and antiinflammatory effects of flavonols have been suggested to be structure-related. Results revealed that selected flavonols, including fisetin (F), kaempferol (K), morin (MO), myricetin (MY), and quercetin (Q), exhibited distinctive free radical scavenging properties against different kinds of free radicals. The H donation (DPPH bleaching) potential was Q > F approximately equals MY > MO > K, indicating that the presence of a 3',4'-catechol moiety in the B ring correlated with high activity. The 4'-OH in the B ring was suggested to be important for reducing xanthing/xanthine oxidase-generated superoxide; while an additional OH moiety on the ortho sites (3' or 5') attenuated the effect as the observed inhibitory potency was K approximately equals MO > Q > F > MY. The relative inhibitory effect for Fenton-mediated hydroxyl radical was K approximately equals MO approximately equals Q > F > MY. This result implies the involvement of 4-keto, 5-OH region in Fe++ chelating and the negative effect of pyrogallol moiety in the B ring. Similar to the inhibitory activity against a N-formyl-methionyl-leucyl-phenylalanine (f-MLP)-stimulated oxidative burst in human polymorphonuclear neutrophils (PMN), our result showed that the structural peculiarity of the di-OH in the B ring obviously rendered F, Q, and MO more potent as ROS inhibitors than MY and K, which have tri- and mono-OH in the B ring, respectively. All of the previous data indicated that the structure prerequisite to reinforce the free radical scavenging activity varies with the type of free radical. We further analyzed the effects of flavonols on nitric oxide (NO) production in endotoxin-stimulated murine macrophages, RAW264.7 cells. Results showed that all flavonols (up to 10 microM) inhibited NO production without exerting detectable cytotoxicity. F, K, and Q dose-dependently repressed iNOS mRNA expression and prostaglandin E2 (PGE2) production, in part through an attenuating NF-kappaB signaling pathway. This result indicates that flavonols, despite structural similarity, have different antioxidant and antiinflammatory effects.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Flavonols/pharmacology , Animals , Cell Line , Dinoprostone/metabolism , Flavonoids/pharmacology , Flavonols/chemistry , Free Radical Scavengers/pharmacology , Gene Expression/drug effects , Humans , Kaempferols/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , NF-kappa B/physiology , Neutrophils/drug effects , Neutrophils/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Quercetin/pharmacology , Reactive Oxygen Species/blood , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...