Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 9(10): 2613-2625, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35959764

ABSTRACT

Fast-response artificial phototropic materials are a promising tool for solar energy utilisation, yet their preparation remains challenging. Herein, we report the so-called photothermal domino strategy for constructing fast-response artificial phototropic materials. In this strategy, photothermal generation, heat conduction and thermal actuation are sequentially optimised by a coordination effect. For the first time, lignin-based organic radicals boosted by this coordination effect are used to significantly enhance photothermal conversion. Interfacial coordination bonds between lignin and an elastomer matrix promote interfacial heat conduction. Light-stimulated thermal actuation is significantly improved by coordination-assisted mechanical training. The prepared biomimetic phototropic material exhibits excellent phototropic ability, with a 2.5 s light-tracking process, showing great application potential for efficient solar energy utilisation. This strategy shows great significance for fabricating high-performance intelligent phototropic materials using widely available, green raw materials.


Subject(s)
Biomimetic Materials , Lignin , Biomimetics , Elastomers , Sunlight
2.
Int J Biol Macromol ; 183: 1450-1458, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33974926

ABSTRACT

In this work, the coordination-based energy sacrificial bonds have been constructed in the interphase between lignin and polyolefin elastomer to prepare high performance lignin-based thermoplastic elastomers (TPEs). The strength and toughness of lignin-based TPEs can be adjusted by choosing different nitrogen heterocyclic compounds as reactive assistants and Fe3+ or Zn2+ as metal coordination centers. It was demonstrated that 3-Amino-1,2,4-triazole with three nitrogen atoms in the heterocyclic ring and one nitrogen branch chain could form the most efficient coordination bond system and generate the best mechanical performance. The system with ferric iron as coordination center exhibited better enhancement effect than divalent zinc. By adjusting the nitrogen-containing reactive additives or metal salts as coordination centers, the mechanical performance of the lignin-based TPE can be regulated, which provides a method for making green bio-composites with good strength and toughness, and also promotes the high value utilization of lignin in polymer materials.


Subject(s)
Elastomers/chemistry , Lignin/chemistry , Nitrogen/chemistry , Polyenes/chemistry
3.
Nat Commun ; 12(1): 2916, 2021 05 18.
Article in English | MEDLINE | ID: mdl-34006839

ABSTRACT

Artificial muscle materials promise incredible applications in actuators, robotics and medical apparatus, yet the ability to mimic the full characteristics of skeletal muscles into synthetic materials remains a huge challenge. Herein, inspired by the dynamic sacrificial bonds in biomaterials and the self-strengthening of skeletal muscles by physical exercise, high performance artificial muscle material is prepared by rearrangement of sacrificial coordination bonds in the polyolefin elastomer via a repetitive mechanical training process. Biomass lignin is incorporated as a green reinforcer for the construction of interfacial coordination bonds. The prepared artificial muscle material exhibits high actuation strain (>40%), high actuation stress (1.5 MPa) which can lift more than 10,000 times its own weight with 30% strain, characteristics of excellent self-strengthening by mechanical training, strain-adaptive stiffening, and heat/electric programmable actuation performance. In this work, we show a facile strategy for the fabrication of intelligent materials using easily available raw materials.


Subject(s)
Biomimetic Materials/chemistry , Biomimetics/methods , Exercise/physiology , Muscle, Skeletal/physiology , Smart Materials/chemistry , Artificial Organs , Elastomers/chemistry , Humans , Mechanical Phenomena , Polyenes/chemistry , Robotics/instrumentation , Robotics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...