Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 8: 707151, 2021.
Article in English | MEDLINE | ID: mdl-34485383

ABSTRACT

Introduction: Synovial sarcoma (SS) is one of the most invasive soft tissue sarcomas, prone to recurrence and metastasis, and the efficacy of surgical treatment and chemotherapy for SS remains poor. Therefore, the diagnosis and treatment of SS remain a significant challenge. This study aimed to analyze the mutated genes of primary SS (PSS) and recurrent SS (RSS), discover whether these sarcomas exhibit some potential mutated genes, and then predict associated microRNAs (miRNA) and circular RNAs (circRNA) by analyzing the mutated genes. We focused on the regulation mechanism of the circRNA-miRNA-mutated hub gene in PSS and RSS. Methods: We performed a comprehensive genomic analysis of four pairs of formalin-fixed paraffin-embedded samples of PSS and RSS, using Illumina human exon microarrays. The gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) function, and pathway enrichment of the mutated genes were analyzed, and the protein-protein interaction (PPI) network was forecast using String software 11.0. The hub genes were then obtained using the Molecular Complex Detection (MCODE) plug-in for Cytoscape 3.7.2 and were used to analyze overall survival (OS) using the Gene Expression Profiling Interactive Analysis (GEPIA) database. The corresponding miRNAs were obtained from the miRDB 5.0 and TargetScan 7.2 databases. The corresponding circRNAs of the hub genes were found through the miRNAs from these databases: Circbank, CircInteractome, and StarBase v2.0. Thereafter we set up a competing endogenous RNA (ceRNA) network with circRNA-miRNA and miRNA-messenger RNA (mRNA) pairs. Results: Using the chi-squared test, 391 mutated genes were screened using a significance level of p-values < 0.01 from the four pairs of PSS and RSS samples. A GO pathway analysis of 391 mutated genes demonstrated that differential expression mRNAs (DEmRNAs) might be bound up with the "positive regulation of neurogenesis," "cell growth," "axon part," "cell-substrate junction," or "protein phosphatase binding" of SS. The PPI network was constructed using 391 mutated genes, and 53 hub genes were identified (p < 0.05). Eight variant hub genes were discovered to be statistically significant using the OS analysis (p < 0.05). The circRNA-miRNA-mRNA (ceRNA) network was constructed, and it identified two circRNAs (hsa_circ_0070557 and hsa_circ_0070558), 10 miRNAs (hsa-let-7a-3p, hsa-let-7b-3p, hsa-let-7f-1-3p, hsa-let-7f-2-3p, hsa-mir-1244, hsa-mir-1197, hsa-mir-124-3p, hsa-mir-1249-5p, hsa-mir-1253, and hsa-mir-1271-5p) and five hub genes (CENPE, ENPP3, GPR18, MDC1, and PLOD2). Conclusion: This study screened novel biological markers and investigated the differentiated circRNA-miRNA-mutated hub gene axis, which may play a pivotal role in the nosogenesis of PSS and RSS. Some circRNAs may be deemed new diagnostic or therapeutic targets that could be conducive to the future clinical treatment of SS.

2.
Onco Targets Ther ; 14: 3003-3011, 2021.
Article in English | MEDLINE | ID: mdl-33986601

ABSTRACT

Phyllodes tumors (PTs) account for less than 1% of breast tumors, and malignant PTs account for even less. Here, we described an unusual case of malignant PT with mixed liposarcoma (myxoid liposarcoma [MLP] and pleomorphic liposarcoma [PLP]). A 52-year-old woman discovered a small lump in her left breast. Twenty years later, the lump suddenly grew within 1 month. Mammography showed space-occupying lesions of the left breast. Histologically, the tumor was characterized by hypercellular stroma covering the epithelium and protrusion of the myoepithelium into the cyst to form a lobulated structure; regions of loose mucus and hypercellular structures alternated. A region of peripheral benign fibroadenoma was also observed, and many stellate and spindle cells or signet ring-like cells were identified in loose areas. Some areas showed a characteristic thin branching vascular pattern. In the cell-rich area, adipocytes and odd megakaryocytes were observed. Atypical mitotic figures were observed in the cell-rich and mucus areas (16 mitoses/10 high-power fields [HPF] and 2 mitoses/10 HPF, respectively). In the immunohistochemical analysis, a small number of tumor cells were positive for AE1/3 and vimentin, whereas all cells were negative for cytokeratin 34ßE12, E-cadherin, p63, estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, and S-100, ruling out the possibility of metaplastic carcinoma. Interestingly, cyclin-dependent kinase 4, mouse double minute 2 (MDM2), and p16 were strongly positive in both loose mucus and cell-rich areas. However, the fluorescence in situ hybridization test results showed that MDM2 was not amplified. Combined with morphological characteristics, these findings supported that the tumor was a mixed malignant PT with MLP and PLP. Our patient did not receive radiation therapy, and after 47 months of follow-up, no recurrence or metastasis occurred. This case report serves to expand the morphologic spectrum of mixed malignant PT with liposarcoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...