Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nat Prod ; 78(5): 1005-14, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25894669

ABSTRACT

Glucose uptake into insulin-sensitive tissues is important for the regulation of blood glucose. This study has investigated whether the pentacyclic triterpenoids substituted with a carboxylic acid at the C-27 position isolated from Astilbe rivularis can enhance glucose uptake and subsequently to also examine their underlying molecular mechanisms. The structure of the new pentacyclic triterpenoid 1 was assigned by spectroscopic data interpretation. To evaluate the activity of compounds 1 and 2, glucose uptake and glucose transporter 4 (GLUT4) translocation were measured in C2C12 myotubes. The C-27-carboxylated triterpenoids 1 and 2 significantly increased basal and insulin-stimulated glucose uptake and GLUT4 translocation to plasma membrane. Both compounds stimulated the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt), and extracellular signal-regulated kinase 1/2 (Erk1/2). Pretreatment with the Akt inhibitor triciribine or the Erk1/2 inhibitor U0126 decreased the ability of both compounds to enhance basal- and insulin-stimulated glucose uptake and stimulate GLUT4 translocation. These results indicate that compounds 1 and 2 activated both the IRS-1/Akt and Erk1/2 pathways and subsequently stimulated GLUT4 translocation, leading to enhanced glucose uptake. Thus, these observations suggest that C-27-carboxylated-pentacyclic triterpenoids may serve as scaffolds for development as agents for the management of blood glucose levels in disease states such as diabetes.


Subject(s)
Glucose/metabolism , Muscle Fibers, Skeletal/metabolism , Pentacyclic Triterpenes/isolation & purification , Pentacyclic Triterpenes/pharmacology , Saxifragaceae/chemistry , Biological Transport , Glucose Transporter Type 4/metabolism , Insulin/pharmacology , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Pentacyclic Triterpenes/chemistry , Phosphorylation , Plant Roots/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Vietnam
2.
Plant Physiol ; 157(1): 109-19, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21771914

ABSTRACT

Physiological functions of sucrose (Suc) transporters (SUTs) localized to the tonoplast in higher plants are poorly understood. We here report the isolation and characterization of a mutation in the rice (Oryza sativa) OsSUT2 gene. Expression of OsSUT2-green fluorescent protein in rice revealed that OsSUT2 localizes to the tonoplast. Analysis of the OsSUT2 promoter::ß-glucuronidase transgenic rice indicated that this gene is highly expressed in leaf mesophyll cells, emerging lateral roots, pedicels of fertilized spikelets, and cross cell layers of seed coats. Results of Suc transport assays in yeast were consistent with a H(+)-Suc symport mechanism, suggesting that OsSUT2 functions in Suc uptake from the vacuole. The ossut2 mutant exhibited a growth retardation phenotype with a significant reduction in tiller number, plant height, 1,000-grain weight, and root dry weight compared with the controls, the wild type, and complemented transgenic lines. Analysis of primary carbon metabolites revealed that ossut2 accumulated more Suc, glucose, and fructose in the leaves than the controls. Further sugar export analysis of detached leaves indicated that ossut2 had a significantly decreased sugar export ability compared with the controls. These results suggest that OsSUT2 is involved in Suc transport across the tonoplast from the vacuole lumen to the cytosol in rice, playing an essential role in sugar export from the source leaves to sink organs.


Subject(s)
Carrier Proteins/metabolism , Organelles/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Sucrose/metabolism , Biological Transport , Molecular Sequence Data , Mutation , Oryza/genetics , Oryza/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...