Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 645542, 2021.
Article in English | MEDLINE | ID: mdl-33936132

ABSTRACT

Drought stress is an important concern worldwide which reduces crop yield and quality. To alleviate this problem, Trichoderma asperellum has been used as a plant growth-promoting fungus capable of inducing plant tolerance to biotic and abiotic stresses. Here, we examined the effect of T. asperellum inoculation on sugarcane plant above and belowground development under drought stress and investigated the role of this fungus on inducing tolerance to drought at physiological and biochemical levels. The experiment was performed in pots under greenhouse conditions, with four treatments and four replicates. The treatments consisted of sugarcane plants inoculated or not with T. asperellum and grown under drought stress and adequate water availability. Drought-stressed sugarcane plants inoculated with T. asperellum changed the crop nutrition and chlorophyll and carotenoid concentrations, resulting in increased photosynthesis rate, stomatal conductance, and water use efficiency compared to the non-inoculated plants. In addition, the antioxidant metabolism also changed, increasing the superoxide dismutase and peroxidase enzyme activities, as well as the proline concentration and sugar portioning. These cascade effects enhanced the root and stalk development, demonstrating that T. asperellum inoculation is an important tool in alleviating the negative effects of drought stress in sugarcane. Future studies should be performed to elucidate if T. asperellum should be reapplied to the sugarcane ratoons.

2.
Int J Biol Macromol ; 172: 330-340, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33453256

ABSTRACT

Novel nanocomposite hydrogels were successfully prepared by blending and crosslinking sodium alginate (SA), poly(vinyl alcohol) (PVA) and cellulose nanofibers (CNFs) in the presence of a fertilizer formulation containing nitrogen (N), phosphorus (P) and potassium (K). The hydrogels had a macroporous flexible core and a microporous semi- interpenetrating polymer network (IPN) shell. The crystalline nature of the NPK chemicals was retained in the hydrogel nanocomposite network. Furthermore, the SA/CNF/PVA-based hydrogels showed a higher water-retention capacity in both deionized water and mixed soil. The swelling behavior in various physiological pH, salt and alkali solutions exhibited good sensitivity. The NPK release from SA/CNF/NPK and SA/CNF/PVA/NPK hydrogels was controlled by Fickian diffusion in both water and soil based on the Korsmeyer-Peppas release kinetics model (n < 0.5). Therefore, the prepared hydrogels have the potential for applications in drought-prone and/or fertilizer-loss regions for future development of precision agriculture and horticulture.


Subject(s)
Alginates/chemistry , Delayed-Action Preparations/chemistry , Nanofibers/chemistry , Nitrogen/chemistry , Phosphorus/chemistry , Polyvinyl Alcohol/chemistry , Potassium/chemistry , Agriculture/methods , Crystallization , Drug Liberation , Fertilizers/analysis , Humans , Hydrogen-Ion Concentration , Kinetics , Nanofibers/ultrastructure , Porosity , Water/chemistry
3.
Plant Dis ; 105(8): 2033-2049, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33455444

ABSTRACT

Numerous reviews and hundreds of refereed articles have been published on silicon's effects on abiotic and biotic stress as well as overall plant growth and development. The science for silicon is well-documented and comprehensive. However, even with this robust body of information, silicon is still not routinely used for alleviating plant stress and promoting plant growth and development. What is holding producers and growers back from using silicon? There are several possible reasons, which include: (i) lack of consistent information on which soil orders are low or limited in silicon, (ii) no universally accepted soil test for gauging the amounts of soluble silicon have been calibrated for many agronomic or horticultural crops, (iii) most analytical laboratories do not routinely assay plant tissue for silicon and current standard tissue digestion procedures used would render silicon insoluble, (iv) many scientists still state that plants are either silicon accumulators or non-accumulators when in reality all plants accumulate some silicon in their plant tissues, (v) silicon is not recognized as being necessary for plant development, (vi) lack of economic studies to show the benefits of applying silicon, and (vii) lack of extension outreach to present the positive benefits of silicon to producers and growers. Many of these issues mentioned above will need to be resolved if silicon is to become a standard practice to improve agronomic and horticultural crop production and plant health.


Subject(s)
Silicon , Soil , Crops, Agricultural , Stress, Physiological
4.
Plants (Basel) ; 6(4)2017 Oct 11.
Article in English | MEDLINE | ID: mdl-29019922

ABSTRACT

Field studies were established on the alluvial floodplain soils in Louisiana, from 2013 to 2015, to evaluate the effect of silicate slag applications on productivity of wheat (Triticum aestivum), under sufficient and high nitrogen (N) application rates. Treatments were arranged in a randomized complete block design, with four replications consisting of twelve treatments: a factorial combination of two N (101 and 145 kg N ha-1) and five silicate slag rates (0, 1, 2, 4.5, and 9 Mg ha-1), and two control plots (with and without lime). Nitrogen had a greater impact on wheat productivity than silicate slag application. Wheat grain yield reached over 7000 kg ha-1 with applications of 145 kg N, and 9 Mg silicate slag per ha for soil having Si level <20 mg kg-1. Yield increases due to N or Si were attributed to the increase in number of spike m-2 and grain number spike-1. Silicate slag application effectively raised soil pH, and availability of several plant-essential nutrients, including plant-available N (nitrate, NO3-), demonstrating the benefits of slag application are beyond increasing plant-available Si. The benefits of silicate slag application were clearly observed in wheat supplied with high N, and on soil with low plant-available Si.

5.
Plants (Basel) ; 6(3)2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28850079

ABSTRACT

A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha-1) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha-1 and one foliar Si solution applied at 20, 40 and 80 mg Si L-1) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As (P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si (P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants.

6.
Sensors (Basel) ; 12(6): 7529-47, 2012.
Article in English | MEDLINE | ID: mdl-22969359

ABSTRACT

Estimating crop yield using remote sensing techniques has proven to be successful. However, sugarcane possesses unique characteristics; such as, a multi-year cropping cycle and plant height-limiting for midseason fertilizer application timing. Our study objective was to determine if sugarcane yield potential could be estimated using an in-season estimation of normalized difference vegetative index (NDVI). Sensor readings were taken using the GreenSeeker® handheld sensor from 2008 to 2011 in St. Gabriel and Jeanerette, LA, USA. In-season estimates of yield (INSEY) values were calculated by dividing NDVI by thermal variables. Optimum timing for estimating sugarcane yield was between 601-750 GDD. In-season estimated yield values improved the yield potential (YP) model compared to using NDVI. Generally, INSEY value showed a positive exponential relationship with yield (r(2) values 0.48 and 0.42 for cane tonnage and sugar yield, respectively). When models were separated based on canopy structure there was an increase the strength of the relationship for the erectophile varieties (r(2) 0.53 and 0.47 for cane tonnage and sugar yield, respectively); however, the model for planophile varieties weakened slightly. Results of this study indicate using an INSEY value for predicting sugarcane yield shows potential of being a valuable management tool for sugarcane producers in Louisiana.


Subject(s)
Biosensing Techniques/methods , Light , Saccharum/growth & development , Seasons , Agriculture , Fertilizers , Louisiana , Models, Biological , Plant Leaves/physiology , Rain , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...