Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 110(24): 4125-4143.e6, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36202097

ABSTRACT

Social isolation during opioid withdrawal is a major contributor to the current opioid addiction crisis. We find that sociability deficits during protracted opioid withdrawal in mice require activation of kappa opioid receptors (KORs) in the nucleus accumbens (NAc) medial shell. Blockade of release from dynorphin (Pdyn)-expressing dorsal raphe neurons (DRPdyn), but not from NAcPdyn neurons, prevents these deficits in prosocial behaviors. Conversely, optogenetic activation of DRPdyn neurons reproduced NAc KOR-dependent decreases in sociability. Deletion of KORs from serotonin (5-HT) neurons, but not from NAc neurons or dopamine (DA) neurons, prevented sociability deficits during withdrawal. Finally, measurements with the genetically encoded GRAB5-HT sensor revealed that during withdrawal KORs block the NAc 5-HT release that normally occurs during social interactions. These results define a neuromodulatory mechanism that is engaged during protracted opioid withdrawal to induce maladaptive deficits in prosocial behaviors, which in humans contribute to relapse.


Subject(s)
Dynorphins , Serotonin , Humans , Mice , Animals , Dynorphins/genetics , Dynorphins/metabolism , Analgesics, Opioid , Dopamine/physiology , Receptors, Opioid, kappa/genetics , Receptors, Opioid, kappa/metabolism , Narcotics , Nucleus Accumbens/metabolism
2.
Am J Drug Alcohol Abuse ; 44(4): 418-425, 2018.
Article in English | MEDLINE | ID: mdl-28981333

ABSTRACT

BACKGROUND: The Clinical Institute Withdrawal Assessment-Alcohol, Revised (CIWA-Ar) is an assessment tool used to quantify alcohol withdrawal syndrome (AWS) severity and inform benzodiazepine treatment for alcohol withdrawal. OBJECTIVES: To evaluate the prescribing patterns and appropriate use of the CIWA-Ar protocol in a general hospital setting, as determined by the presence or absence of documented AWS risk factors, patients' ability to communicate, and provider awareness of the CIWA-Ar order. METHODS: This retrospective chart review included 118 encounters of hospitalized patients placed on a CIWA-Ar protocol during one year. The following data were collected for each encounter: patient demographics, admitting diagnosis, ability to communicate, and admission blood alcohol level; and medical specialty of the clinician ordering CIWA-Ar, documentation of the presence or absence of established AWS risk factors, specific parameters of the protocol ordered, service admitted to, provider documentation of awareness of the active protocol within 48 h of initial order, total benzodiazepine dose equivalents administered and associated adverse events. RESULTS: 57% of patients who started on a CIWA-Ar protocol had either zero or one documented risk factor for AWS (19% and 38% respectively). 20% had no documentation of recent alcohol use. 14% were unable to communicate. 19% of medical records lacked documentation of provider awareness of the ordered protocol. Benzodiazepine associated adverse events were documented in 15% of encounters. CONCLUSIONS: The judicious use of CIWA-Ar protocols in general hospitals requires mechanisms to ensure assessment of validated alcohol withdrawal risk factors, exclusion of patients who cannot communicate, and continuity of care during transitions.


Subject(s)
Alcohol Withdrawal Delirium/drug therapy , Alcoholism/drug therapy , Ethanol/adverse effects , Substance Withdrawal Syndrome/drug therapy , Adult , Aged , Benzodiazepines/therapeutic use , Blood Alcohol Content , Clinical Protocols , Female , Hospitals, General , Humans , Male , Middle Aged , Retrospective Studies
3.
Nature ; 539(7628): 289-293, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27652894

ABSTRACT

The basal ganglia, a group of subcortical nuclei, play a crucial role in decision-making by selecting actions and evaluating their outcomes. While much is known about the function of the basal ganglia circuitry in selection, how these nuclei contribute to outcome evaluation is less clear. Here we show that neurons in the habenula-projecting globus pallidus (GPh) in mice are essential for evaluating action outcomes and are regulated by a specific set of inputs from the basal ganglia. We find in a classical conditioning task that individual mouse GPh neurons bidirectionally encode whether an outcome is better or worse than expected. Mimicking these evaluation signals with optogenetic inhibition or excitation is sufficient to reinforce or discourage actions in a decision-making task. Moreover, cell-type-specific synaptic manipulations reveal that the inhibitory and excitatory inputs to the GPh are necessary for mice to appropriately evaluate positive and negative feedback, respectively. Finally, using rabies-virus-assisted monosynaptic tracing, we show that the GPh is embedded in a basal ganglia circuit wherein it receives inhibitory input from both striosomal and matrix compartments of the striatum, and excitatory input from the 'limbic' regions of the subthalamic nucleus. Our results provide evidence that information about the selection and evaluation of actions is channelled through distinct sets of basal ganglia circuits, with the GPh representing a key locus in which information of opposing valence is integrated to determine whether action outcomes are better or worse than expected.


Subject(s)
Basal Ganglia/cytology , Basal Ganglia/physiology , Decision Making , Neural Pathways/physiology , Punishment , Reward , Animals , Conditioning, Classical , Feedback, Physiological , Female , Globus Pallidus/cytology , Globus Pallidus/physiology , Glutamic Acid/metabolism , Habenula/cytology , Habenula/physiology , Male , Mice , Neurons/metabolism , Optogenetics , Rabies virus/physiology , Synapses/metabolism , gamma-Aminobutyric Acid/metabolism
4.
Cell ; 156(6): 1139-1152, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24630718

ABSTRACT

The brain's response to sensory input is strikingly modulated by behavioral state. Notably, the visual response of mouse primary visual cortex (V1) is enhanced by locomotion, a tractable and accessible example of a time-locked change in cortical state. The neural circuits that transmit behavioral state to sensory cortex to produce this modulation are unknown. In vivo calcium imaging of behaving animals revealed that locomotion activates vasoactive intestinal peptide (VIP)-positive neurons in mouse V1 independent of visual stimulation and largely through nicotinic inputs from basal forebrain. Optogenetic activation of VIP neurons increased V1 visual responses in stationary awake mice, artificially mimicking the effect of locomotion, and photolytic damage of VIP neurons abolished the enhancement of V1 responses by locomotion. These findings establish a cortical circuit for the enhancement of visual response by locomotion and provide a potential common circuit for the modulation of sensory processing by behavioral state.


Subject(s)
Neocortex/metabolism , Neurons/metabolism , Running , Visual Pathways , Animals , Female , GABAergic Neurons/metabolism , Male , Mice , Neocortex/cytology , Receptors, Nicotinic/metabolism , Vasoactive Intestinal Peptide/metabolism , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...