Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 166(Pt 2): 355-375, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27241368

ABSTRACT

In many countries, assessment programmes are carried out to identify areas where people may be exposed to high radon levels. These programmes often involve detailed mapping, followed by spatial interpolation and extrapolation of the results based on the correlation of indoor radon values with other parameters (e.g., lithology, permeability and airborne total gamma radiation) to optimise the radon hazard maps at the municipal and/or regional scale. In the present work, Geographical Weighted Regression and geostatistics are used to estimate the Geogenic Radon Potential (GRP) of the Lazio Region, assuming that the radon risk only depends on the geological and environmental characteristics of the study area. A wide geodatabase has been organised including about 8000 samples of soil-gas radon, as well as other proxy variables, such as radium and uranium content of homogeneous geological units, rock permeability, and faults and topography often associated with radon production/migration in the shallow environment. All these data have been processed in a Geographic Information System (GIS) using geospatial analysis and geostatistics to produce base thematic maps in a 1000 m × 1000 m grid format. Global Ordinary Least Squared (OLS) regression and local Geographical Weighted Regression (GWR) have been applied and compared assuming that the relationships between radon activities and the environmental variables are not spatially stationary, but vary locally according to the GRP. The spatial regression model has been elaborated considering soil-gas radon concentrations as the response variable and developing proxy variables as predictors through the use of a training dataset. Then a validation procedure was used to predict soil-gas radon values using a test dataset. Finally, the predicted values were interpolated using the kriging algorithm to obtain the GRP map of the Lazio region. The map shows some high GRP areas corresponding to the volcanic terrains (central-northern sector of Lazio region) and to faulted and fractured carbonate rocks (central-southern and eastern sectors of the Lazio region). This typical local variability of autocorrelated phenomena can only be taken into account by using local methods for spatial data analysis. The constructed GRP map can be a useful tool to implement radon policies at both the national and local levels, providing critical data for land use and planning purposes.


Subject(s)
Background Radiation , Radiation Monitoring/methods , Radon/analysis , Air Pollutants, Radioactive/analysis , Air Pollution, Indoor , Algorithms , Geographic Information Systems , Radium/analysis , Soil , Soil Pollutants, Radioactive/analysis , Spatial Analysis , Spatial Regression , Uranium/analysis
2.
J Environ Radioact ; 162-163: 146-153, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27253897

ABSTRACT

The effect of water molecules on the electrostatic collection of 218Po ions onto the surface of silicon detectors (neutralization) is evaluated through the comparison with a scintillation cell (ZnS), not affected by air humidity. A radon monitor (RAD7, Durridge Company) was connected to a stainless steel radon chamber, equipped with the scintillation cell. Radon gas, extracted from an acidified RaCl2 source, was injected into the chamber and the amount of water molecules in the system was alternatively lowered or increased (from 0.00075 to 0.014 g of water in RAD7) by connecting the chamber to a desiccant or to a bubbling water bottle. The relative efficiency of the silicon detector with respect to the scintillation cell decreases with the growth of water molecules inside RAD7. This dependence, with a fixed i) electrostatic chamber geometry and ii) nominal high voltage, diverges during the humidification or the drying phase because it is in turn influenced by the length of interaction of polonium atoms with water molecules, which impacts on the size of 218Po clusters and thus on the neutralization process. For water contents higher that 0.01 g in RAD7, this effect is greatly enhanced. Temperature in the investigated range (18.5-35.6 °C) does not affect the efficiency of electrostatic collection-based silicon detectors. Based on these experiments, admitting a certain error on the efficiency (from 1.8 to 7.5%, depending on the water content), proper corrections were developed to adjust soil radon readings, when a desiccant is removed. This operation is necessary if recent Non-Aqueous Phase Liquids (NAPLs) leakage has occurred in the subsoil to avoid the sorption and possible later release of radon by Drierite, with related partition between the solid and liquid phases (water and NAPL).


Subject(s)
Radiation Monitoring/instrumentation , Water Pollutants, Radioactive/analysis , Water/chemistry , Polonium , Radiation Monitoring/methods , Radon/analysis , Silicon , Static Electricity
3.
Appl Radiat Isot ; 64(2): 254-63, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16154752

ABSTRACT

A method to determine simultaneously the rates of 222Rn and 220Rn released from building materials quarried in Central Italy is presented. The method makes use of a continuous monitor equipped with a solid state alpha detector, in-line connected to a small accumulation chamber. The effects of chamber leakage and back diffusion on 222Rn free exhalation rate is evaluated. The influence of available exhalation surface, humidity content and precursors concentration on radon and thoron exhalation rates is investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...