Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 116(22): 10698-10704, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31088967

ABSTRACT

We synthesized the liquid crystal dimer and trimer members of a series of flexible linear oligomers and characterized their microscopic and nanoscopic properties using resonant soft X-ray scattering and a number of other experimental techniques. On the microscopic scale, the twist-bend phases of the dimer and trimer appear essentially identical. However, while the liquid crystal dimer exhibits a temperature-dependent variation of its twist-bend helical pitch varying from 100 to 170 Å on heating, the trimer exhibits an essentially temperature-independent pitch of 66 Å, significantly shorter than those reported for other twist-bend forming materials in the literature. We attribute this to a specific combination of intrinsic conformational bend of the trimer molecules and a sterically favorable intercalation of the trimers over a commensurate fraction (two-thirds) of the molecular length. We develop a geometric model of the twist-bend phase for these materials with the molecules arranging into helical chain structures, and we fully determine their respective geometric parameters.

2.
Phys Rev Lett ; 122(10): 107801, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30932628

ABSTRACT

An achiral, bent-core mesogen forms several tilted smectic liquid crystal phases, including a nonpolar, achiral de Vries smectic A which transitions to a chiral, ferroelectric state in applied electric fields above a threshold. At lower temperature, a chiral, ferrielectric phase with a periodic, supermolecular modulation of the tilt azimuth, indicated by a Bragg peak in carbon-edge resonant soft x-ray scattering, is observed. The absence of a corresponding resonant umklapp peak identifies the superlayer structure as a twist-bend-like helix that is only weakly modulated by the smectic layering.

3.
Soft Matter ; 14(34): 7045-7051, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30112539

ABSTRACT

An artificial nucleolipid containing thymine, a triazole-ring, and phosphatidylcholine (TTPC) moieties was prepared by copper catalyzed azide alkyne cycloaddition (CuAAC) under aqueous conditions. The resulting TTPC molecules assembled in situ into a fibrous aggregation. The study of the TTPC fiber assembly using XRD and NMR spectroscopy revealed that the formation of fibers was driven by the unique combination of the lipid and nucleobase moieties in the structure of TTPC. At a critical TTPC concentration, entanglement of the fibers resulted in the formation of a supramolecular hydrogel. Investigation of the lyotropic mesophases in the TTPC supramolecular hydrogel showed the presence of multiple phases including two liquid crystal phases (i.e., nematic and lamellar), which have a certain degree of structural order and are promising templates for constructing functional biomaterials.


Subject(s)
Hydrogels/chemistry , Liquid Crystals/chemistry , Phosphatidylcholines/chemistry , Thymine/chemistry , Alkynes/chemistry , Azides/chemistry , Cycloaddition Reaction , Gold/chemistry , Nanofibers/chemistry , Nanotubes/chemistry , Thermodynamics , Triazoles/chemistry
4.
Sci Adv ; 3(2): e1602102, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28246642

ABSTRACT

A lamellar liquid crystal (LC) phase of certain bent-core mesogenic molecules can be grown in a manner that generates a single chiral helical nanofilament in each of the cylindrical nanopores of an anodic aluminum oxide (AAO) membrane. By introducing guest molecules into the resulting composite chiral nanochannels, we explore the structures and functionality of the ordered guest/host LC complex, verifying the smectic-like positional order of the fluidic nematic LC phase, which is obtained by the combination of the LC organization and the nanoporous AAO superstructure. The guest nematic LC 4'-n-pentyl-4-cyanobiphenyl is found to form a distinctive fluid layered ordered LC complex at the nanofilament/guest interface with the host 1,3-phenylene bis[4-(4-nonyloxyphenyliminomethyl)benzoate], where this interface contacts the AAO cylinder wall. Filament growth form is strongly influenced by mixture parameters and pore dimensions.

5.
J Am Chem Soc ; 138(20): 6676-87, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27035214

ABSTRACT

Proving the structures of charged metallacages obtained by metal ion coordination-driven solution self-assembly is challenging, and the common use of routine NMR spectroscopy and mass spectrometry is unreliable. Carefully determined diffusion coefficients from diffusion-ordered proton magnetic resonance (DOSY NMR) for six cages of widely differing sizes lead us to propose a structural reassignment of two molecular cages from a previously favored trimer to a pentamer or hexamer, and another from a trimer to a much higher oligomer, possibly an intriguing tetradecamer. In the former case, strong support for the reassignment to a larger cage is provided by an observation of a slow reversible transformation of the initially formed cage into a smaller but spectrally very similar one upon dilution. In the latter case, freeze-fracture transmission electron micrographs demonstrate that at least some of the solutions are colloidal, and high-resolution electron transmission and atomic force microscopy images are compatible with a tetradecamer but not a trimer. Comparison of solute partial molar volumes deduced from measurement of solution density with volumes anticipated from molecular models argues strongly against the presence of large voids (solvent vapor bubbles) in cages dissolved in nitromethane. The presence of bubbles was previously proposed in an attempt to account for the bilinear nature of the Eyring plot of the rate constant for pyridine ligand edge exchange reaction in one of the cages and for the unusual activation parameters in the high-temperature regime. An alternative interpretation is proposed now.

6.
Phys Rev Lett ; 116(14): 147803, 2016 04 08.
Article in English | MEDLINE | ID: mdl-27104729

ABSTRACT

Resonant x-ray scattering shows that the bulk structure of the twist-bend liquid crystal phase, recently discovered in bent molecular dimers, has spatial periodicity without electron density modulation, indicating a lattice-free heliconical nematic precession of orientation that has helical glide symmetry. In situ study of the bulk helix texture of the dimer CB7CB shows an elastically confined temperature-dependent minimum helix pitch, but a remarkable elastic softness of pitch in response to dilative stresses. Scattering from the helix is not detectable in the higher temperature nematic phase.

7.
Nat Commun ; 6: 7763, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26249039

ABSTRACT

In many technologies used to achieve separation of enantiomers, chiral selectors are designed to display differential affinity for the two enantiomers of a chiral compound. Such complexes are diastereomeric, differing in structure and free energy for the two enantiomers and enabling chiral discrimination. Here we present evidence for strong diastereomeric interaction effects at the mesoscale, manifested in chiral liquid crystal guest materials confined in a chiral, nanoporous network of semi-crystalline helical nanofilaments. The nanoporous host is itself an assembly of achiral, bent-core liquid crystal molecules that phase-separate into a conglomerate of 100 micron-scale, helical nanofilament domains that differ in structure only in the handedness of their homogeneous chirality. With the inclusion of a homochiral guest liquid crystal, these enantiomeric domains become diastereomeric, exhibiting unexpected and markedly different mesoscale structures and orientation transitions producing optical effects in which chirality has a dominant role.

8.
Adv Mater ; 27(15): 2459-65, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25732045

ABSTRACT

A series of solvent-free elastin-like polypeptide liquid crystals and liquids are developed by electrostatic complexation of supercharged elastin-like polypeptides with surfactants. The smectic mesophases exhibit a high elasticity and the values can be easily tuned by varying the alkyl chain lengths of the surfactants or the lengths of the elastin-like polypeptides.


Subject(s)
Elasticity , Genetic Engineering , Liquid Crystals/chemistry , Peptides/chemistry , Peptides/genetics , Green Fluorescent Proteins/genetics , Models, Molecular , Protein Conformation
9.
Chemistry ; 21(13): 4898-903, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25712569

ABSTRACT

As DNA exhibits persistent structures with dimensions that exceed the range of their intermolecular forces, solid-state DNA undergoes thermal degradation at elevated temperatures. Therefore, the realization of solvent-free DNA fluids, including liquid crystals and liquids, still remains a significant challenge. To address this intriguing issue, we demonstrate that combining DNA with suitable cationic surfactants, followed by dehydration, can be a simple generic scheme for producing these solvent-free DNA fluid systems. In the anhydrous smectic liquid crystalline phase, DNA sublayers are intercalated between aliphatic hydrocarbon sublayers. The lengths of the DNA and surfactant are found to be extremely important in tuning the physical properties of the fluids. Stable liquid-crystalline and liquid phases are obtained in the -20 °C to 200 °C temperature range without thermal degradation of the DNA. Thus, a new type of DNA-based soft biomaterial has been achieved, which will promote the study and application of DNA in a much broader context.


Subject(s)
Crystallization/methods , DNA/chemistry , Liquid Crystals/chemistry , Surface Properties
10.
Article in English | MEDLINE | ID: mdl-25353488

ABSTRACT

The chiral, heliconical (twist-bend) nematic ground state is reported in an achiral, rigid, bent-core mesogen (UD68). Similar to the nematic twist-bend (N(TB)) phase observed in bent molecular dimers, the N(TB) phase of UD68 forms macroscopic, smecticlike focal-conic textures and exhibits nanoscale, periodic modulation with no associated modulation of the electron density, i.e., without a detectable lamellar x-ray reflection peak. The N(TB) helical pitch is p(TB) ∼ 14 nm. When an electric field is applied normal to the helix axis, a weak electroclinic effect is observed, revealing 50-µm-scale left- and right-handed domains in a chiral conglomerate.


Subject(s)
Liquid Crystals/chemistry , Models, Chemical , Models, Molecular , Computer Simulation , Isomerism , Materials Testing , Molecular Conformation , Phase Transition
11.
Proc Natl Acad Sci U S A ; 110(40): 15931-6, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24006362

ABSTRACT

Freeze-fracture transmission electron microscopy study of the nanoscale structure of the so-called "twist-bend" nematic phase of the cyanobiphenyl (CB) dimer molecule CB(CH2)7CB reveals stripe-textured fracture planes that indicate fluid layers periodically arrayed in the bulk with a spacing of d ~ 8.3 nm. Fluidity and a rigorously maintained spacing result in long-range-ordered 3D focal conic domains. Absence of a lamellar X-ray reflection at wavevector q ~ 2π/d or its harmonics in synchrotron-based scattering experiments indicates that this periodic structure is achieved with no detectable associated modulation of the electron density, and thus has nematic rather than smectic molecular ordering. A search for periodic ordering with d ~ in CB(CH2)7CB using atomistic molecular dynamic computer simulation yields an equilibrium heliconical ground state, exhibiting nematic twist and bend, of the sort first proposed by Meyer, and envisioned in systems of bent molecules by Dozov and Memmer. We measure the director cone angle to be θ(TB) ~ 25° and the full pitch of the director helix to be p(TB) ~ 8.3 nm, a very small value indicating the strong coupling of molecular bend to director bend.


Subject(s)
Liquid Crystals/chemistry , Models, Molecular , Molecular Conformation , Nanostructures/chemistry , Dimerization , Freeze Fracturing , Microscopy, Electron, Transmission , Molecular Structure
12.
Rev Sci Instrum ; 83(1): 015102, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22299981

ABSTRACT

Chemically functionalized probes are required for tunneling measurements made via chemical contacts ("Recognition Tunneling"). Here, we describe the etching of gold STM probes suitable for chemical functionalization with moieties bearing thiol groups. Insulated with high density polyethylene, these probes may be used in aqueous electrolytes with sub pA leakage currents. The area of the exposed probe surface was characterized via the saturation current in an electroactive solution (0.1 M K(3)Fe(CN)(6)). Twenty five percent of the probes had an exposed region of 10 nm radius or less.


Subject(s)
Gold/chemistry , Microscopy, Scanning Tunneling/instrumentation , Water/chemistry , Electrochemistry , Electrolytes/chemistry , Polyethylene/chemistry , Solvents/chemistry
13.
Nat Nanotechnol ; 5(12): 868-73, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21076404

ABSTRACT

It has been proposed that single molecules of DNA could be sequenced by measuring the physical properties of the bases as they pass through a nanopore. Theoretical calculations suggest that electron tunnelling can identify bases in single-stranded DNA without enzymatic processing, and it was recently experimentally shown that tunnelling can sense individual nucleotides and nucleosides. Here, we report that tunnelling electrodes functionalized with recognition reagents can identify a single base flanked by other bases in short DNA oligomers. The residence time of a single base in a recognition junction is on the order of a second, but pulling the DNA through the junction with a force of tens of piconewtons would yield reading speeds of tens of bases per second.


Subject(s)
DNA/chemistry , Nanotechnology/instrumentation , Nucleotides/analysis , Sequence Analysis, DNA/instrumentation , Electrodes , Electrons , Microscopy, Electron, Transmission , Models, Molecular , Nanotechnology/methods , Sequence Analysis, DNA/methods , Spectrum Analysis
14.
J Phys Chem C Nanomater Interfaces ; 114(48): 20443-20448, 2010 Dec 09.
Article in English | MEDLINE | ID: mdl-21197382

ABSTRACT

The DNA bases interact strongly with gold electrodes, complicating efforts to measure the tunneling conductance through hydrogen-bonded Watson Crick base pairs. When bases are embedded in a self-assembled alkane-thiol monolayer to minimize these interactions, new features appear in the tunneling data. These new features track the predictions of density-functional calculations quite well, suggesting that they reflect tunnel conductance through hydrogen-bonded base pairs.

SELECTION OF CITATIONS
SEARCH DETAIL
...