Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Transl Res ; 266: 57-67, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38013006

ABSTRACT

TMEM165-CDG has first been reported in 2012 and manganese supplementation was shown highly efficient in rescuing glycosylation in isogenic KO cells. The unreported homozygous missense c.928G>C; p.Ala310Pro variant leading to a functional but unstable protein was identified. This patient was diagnosed at 2 months and displays a predominant bone phenotype and combined defects in N-, O- and GAG glycosylation. We administered for the first time a combined D-Gal and Mn2+ therapy to the patient. This fully suppressed the N-; O- and GAG hypoglycosylation. There was also striking improvement in biochemical parameters and in gastrointestinal symptoms. This study offers exciting therapeutic perspectives for TMEM165-CDG.


Subject(s)
Cation Transport Proteins , Congenital Disorders of Glycosylation , Humans , Manganese/metabolism , Galactose , Antiporters/metabolism , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Cation Transport Proteins/metabolism , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism
2.
Biomed Pharmacother ; 163: 114813, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37150031

ABSTRACT

BACKGROUND: Lipin-1 deficiency is a life-threatening disease that causes severe rhabdomyolysis (RM) and chronic symptoms associated with oxidative stress. In the absence of treatment, Hydroxychloroquine sulfate (HCQ) was administered to patients off label use on a compassionate basis in order to improve their physical conditions. METHODS: Eleven patients with LPIN1 mutations were treated with HCQ. Clinical and biological efficacy and tolerance were assessed, including pain and quality of life, physical capacities, cardiopulmonary parameters, creatine kinase levels and plasma proinflammatory cytokines. To explore a dose-dependent effect of HCQ, primary myoblasts from 4 patients were incubated with various HCQ concentrations in growth medium (GM) or during starvation (EBSS medium) to investigate autophagy and oxidative stress. FINDINGS: Under HCQ treatment, patient physical capacities improved. Abnormal cardiac function and peripheral muscle adaptation to exercise were normalized. However, two patients who had the highest mean blood HCQ concentrations experienced RM. We hypothesized that HCQ exerts deleterious effects at high concentrations by blocking autophagy, and beneficial effects on oxidative stress at low concentrations. We confirmed in primary myoblasts from 4 patients that high in vitro HCQ concentration (10 µM) but not low concentration (1 µM and 0.1 µM) induced autophagy blockage by modifying endolysosomal pH. Low HCQ concentration (1 µM) prevented reactive oxygen species (ROS) and oxidized DNA accumulation in myoblasts during starvation. INTERPRETATION: HCQ improves the condition of patients with lipin-1 deficiency, but at low concentrations. In vitro, 1 µM HCQ decreases oxidative stress in myoblasts whereas higher concentrations have a deleterious effect by blocking autophagy.


Subject(s)
Hydroxychloroquine , Quality of Life , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Cytokines , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Phosphatidate Phosphatase/genetics
3.
J Inherit Metab Dis ; 46(4): 649-661, 2023 07.
Article in English | MEDLINE | ID: mdl-36680547

ABSTRACT

Mutations in the LPIN1 gene constitute a major cause of severe rhabdomyolysis (RM). The TLR9 activation prompted us to treat patients with corticosteroids in acute conditions. In patients with LPIN1 mutations, RM and at-risk situations that can trigger RM have been treated in a uniform manner. Since 2015, these patients have also received intravenous corticosteroids. We retrospectively compared data on hospital stays by corticosteroid-treated patients vs. patients not treated with corticosteroids. Nineteen patients were hospitalized. The median number of admissions per patient was 21 overall and did not differ when comparing the 10 corticosteroid-treated patients with the 9 patients not treated with corticosteroids. Four patients in the non-corticosteroid group died during a RM (mean age at death: 5.6 years). There were no deaths in the corticosteroid group. The two groups did not differ significantly in the number of RM episodes. However, for the six patients who had RM and occasionally been treated with corticosteroids, the median number of RM episodes was significantly lower when intravenous steroids had been administered. The peak plasma creatine kinase level and the area under the curve were or tended to be higher in patients treated with corticosteroids-even after the exclusion of deceased patients or focusing on the period after 2015. The median length of stay (10 days overall) was significantly longer for corticosteroid-treated patients but was similar after the exclusion of deceased patients. The absence of deaths and the higher severity of RM observed among corticosteroid-treated patients could suggest that corticotherapy is associated with greater survival.


Subject(s)
Rhabdomyolysis , Humans , Child, Preschool , Retrospective Studies , Rhabdomyolysis/drug therapy , Rhabdomyolysis/chemically induced , Glucocorticoids , Acute Disease , Phosphatidate Phosphatase/genetics
4.
Cell Rep Med ; 2(8): 100370, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34467247

ABSTRACT

LPIN1 mutations are responsible for inherited recurrent rhabdomyolysis, a life-threatening condition with no efficient therapeutic intervention. Here, we conduct a bedside-to-bench-and-back investigation to study the pathophysiology of lipin1 deficiency. We find that lipin1-deficient myoblasts exhibit a reduction in phosphatidylinositol-3-phosphate close to autophagosomes and late endosomes that prevents the recruitment of the GTPase Armus, locks Rab7 in the active state, inhibits vesicle clearance by fusion with lysosomes, and alters their positioning and function. Oxidized mitochondrial DNA accumulates in late endosomes, where it activates Toll-like receptor 9 (TLR9) and triggers inflammatory signaling and caspase-dependent myolysis. Hydroxychloroquine blocks TLR9 activation by mitochondrial DNA in vitro and may attenuate flares of rhabdomyolysis in 6 patients treated. We suggest a critical role for defective clearance of oxidized mitochondrial DNA that activates TLR9-restricted inflammation in lipin1-related rhabdomyolysis. Interventions blocking TLR9 activation or inflammation can improve patient care in vivo.


Subject(s)
Mitochondria/metabolism , Phosphatidate Phosphatase/metabolism , Rhabdomyolysis/pathology , Autophagosomes/metabolism , Child , Child, Preschool , Chloroquine/pharmacology , DNA, Mitochondrial/metabolism , Endosomes/metabolism , Female , Follow-Up Studies , GTPase-Activating Proteins/metabolism , Humans , Inflammation/pathology , Lysosomes/metabolism , Male , Myoblasts/metabolism , Phosphatidate Phosphatase/deficiency , Phosphatidylinositol Phosphates , Signal Transduction , Toll-Like Receptor 9/metabolism , rab7 GTP-Binding Proteins/metabolism
5.
Pharm Dev Technol ; 26(3): 328-334, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33428504

ABSTRACT

Hydroxychloroquine is an antimalarial drug indicated in the treatment of acute attacks of malaria due to Plasmodium vivax, P. malariae, P. ovale, and susceptible strains of P. falciparum. It is also used for the treatment of rheumatoid arthritis, discoid and systemic lupus erythematosus, and more recently proposed in COVID-19 therapy. Hydroxychloroquine is only available in tablets which are not easy to administer for pediatric and geriatric patients, and patients unable to swallow such as patients found in intensive care units. The aim of this work was to develop and optimize a ready to use liquid hydroxychloroquine formulation and to carry out the corresponding chemical and microbiological stability studies. The formulation was evaluated for ease of preparation, physical properties, and palatability. Its stability was performed at ambient temperature and under refrigeration. After 6 months of stability testing, the results showed no pH change, no drug loss, no microbial development, and no visual change. The formulation, employing excipients in a range that EMA has recommended, showed chemical and microbiological stability for at least 6 months even in the worst storage conditions.


Subject(s)
Antimalarials/chemistry , COVID-19 Drug Treatment , Hydroxychloroquine/chemistry , Chromatography, High Pressure Liquid , Drug Compounding , Drug Contamination/prevention & control , Drug Stability , Humans , Quality Control , Suspensions , Taste
6.
JIMD Rep ; 51(1): 25-29, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32071836

ABSTRACT

Beta-hydroxybutyrate (BHB) is a synthetic ketone body used as an adjuvant energy substrate in the treatment of patients with metabolic cardiomyopathy. A medication prescribing error led to the administration of the general anesthetic sodium gamma-hydroxybutyrate (GHB) instead of sodium BHB in a liver transplant recipient with propionic acidemia and cardiomyopathy, causing acute coma. A 15-year-old boy suffering from neonatal propionic acidemia underwent liver transplantation (LT) for metabolic decompensation and cardiomyopathy (treated with cardiotropic drugs and BHB) diagnosed a year previously. The patient had been rapidly extubated after LT, and was recovering well. Eight days after LT, the patient suddenly became comatose. No metabolic, immunological, hypertensive, or infectious complications were apparent. The brain magnetic resonance imaging and electroencephalography results were normal. The coma was soon attributed to a medication prescribing error: administration of GHB instead of BHB on day 8 post-LT. The patient recovered fully within a few hours of GHB withdrawal. The computerized prescription system had automatically suggested the referenced anesthetic GHB (administered intravenously) instead of the non-referenced ketone body BHB, triggering coma in our patient. A computerized prescription system generated a medication prescribing error for a rare disease, in which the general anesthetic GHB was mistaken for the nonreferenced energy substrate BHB.

7.
Hum Gene Ther ; 30(6): 753-761, 2019 06.
Article in English | MEDLINE | ID: mdl-30700149

ABSTRACT

Seventy-five percent of patients with beta thalassemia (ß-thalassemia) do not have human leukocyte antigen-matched siblings and until recently had no access to a curative treatment. Gene therapy is a promising treatment that can be proposed to these patients. This study estimates its cost and efficacy. In a monocentric retrospective study and cost-efficacy analysis, this study compared the two-year outcomes and costs of patients with ß-thalassemia treated by gene therapy and hematopoietic stem-cell transplantation (HSCT). Grade III and grade IV complications, hospitalizations, and length of stay were extracted from the hospital discharge data. Costs were estimated from hospital accounting information and national cost studies. A total of seven patients with ß-thalassemia treated between 2009 and 2016 were included, of whom four received gene therapy. Patients treated by gene therapy were older and had fewer complications and hospital admissions. Infectious complications were three times more frequent for patients treated with HSCT than for gene therapy. Average costs were €608,086 for patients treated by gene therapy and €215,571 for HSCT. The total cost of the vector was 48% of the total cost of gene therapy. Gene therapy as a curative alternative for patients lacking human leukocyte antigen-matched donors was costlier but resulted in fewer complications than HSCT.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cell Transplantation , beta-Thalassemia/genetics , beta-Thalassemia/therapy , Adolescent , Child , Child, Preschool , Clinical Trials as Topic , Cost-Benefit Analysis , Genetic Therapy/economics , Genetic Therapy/methods , Genetic Vectors , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Health Care Costs , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/economics , Hematopoietic Stem Cell Transplantation/methods , Humans , Infant , Prognosis , Retrospective Studies , Tissue Donors , Transplantation, Homologous , Treatment Outcome , beta-Thalassemia/diagnosis , beta-Thalassemia/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...