Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(7): e0270703, 2022.
Article in English | MEDLINE | ID: mdl-35834483

ABSTRACT

Abundance and distribution of commercial marine resources are influenced by environmental variables, which together with fishery patterns may also influence their catchability. However, Catch Per Unit Effort (CPUE) can be standardized in order to remove most of the variability not directly attributable to fish abundance. In the present study, Generalized Additive Models (GAMs) were used to investigate the effect of some environmental and fishery covariates on the spatial distribution and abundance of the Norway lobster Nephrops norvegicus within the Pomo/Jabuka Pits (Central Adriatic Sea) and to include those that resulted significant in a standardization process. N. norvegicus is a commercially important demersal crustacean, altering its catchability over the 24-h cycle and seasons according to its burrowing behavior. A historically exploited fishing ground for this species, since 2015 subject to specific fisheries management measures, is represented by the meso-Adriatic depressions, which are also characterized by particular oceanographic conditions. Both the species behaviour and the features of this study area influence the dynamics of the population offering a challenging case study for a standardization modelling approach. Environmental and catch data were obtained during scientific trawl surveys properly designed to catch N. norvegicus, thus improving the quality of the model input data. Standardization of CPUE from 2 surveys from 2012 to 2019 was conducted building two GAMs for both biomass and density indices. Bathymetry, fishing pressure, dissolved oxygen and salinity proved to be significant drivers influencing catch distribution. After cross validations, the tuned models were then used to predict new indices for the study area and the two survey series by means of informed spatial grids, composed by constant surface cells, to each of which are associated average values of environmental parameters and specific levels of fishing pressure, depending on the management measures in place. The predictions can be used to better describe the structure and the spatio-temporal distribution of the population providing valuable information to evaluate the status of such an important marine resource.


Subject(s)
Fisheries , Nephropidae , Animals , Ecosystem , Norway , Seafood
2.
Sci Rep ; 11(1): 5797, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707595

ABSTRACT

Underwater Television (UWTV) surveys provide fishery-independent stock size estimations of the Norway lobster (Nephrops norvegicus), based directly on burrow counting using the survey assumption of "one animal = one burrow". However, stock size may be uncertain depending on true rates of burrow occupation. For the first time, 3055 video transects carried out in several Functional Units (FUs) around Ireland were used to investigate this uncertainty. This paper deals with the discrimination of burrow emergence and door-keeping diel behaviour in Nephrops norvegicus, which is one of the most commercially important fisheries in Europe. Comparisons of burrow densities with densities of visible animals engaged in door-keeping (i.e. animals waiting at the tunnel entrance) behaviour and animals in full emergence, were analysed at time windows of expected maximum population emergence. Timing of maximum emergence was determined using wave-form analysis and GAM modelling. The results showed an average level of 1 visible Nephrops individual per 10 burrow systems, depending on sampling time and depth. This calls into question the current burrow occupancy assumption which may not hold true in all FUs. This is discussed in relation to limitations of sampling methodologies and new autonomous robotic technological solutions for monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...