Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Dis Model Mech ; 17(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38390727

ABSTRACT

The tympanic membrane (i.e. eardrum) sits at the interface between the middle and external ear. The tympanic membrane is composed of three layers: an outer ectoderm-derived layer, a middle neural crest-derived fibroblast layer with contribution from the mesoderm-derived vasculature, and an inner endoderm-derived mucosal layer. These layers form a thin sandwich that is often perforated following trauma, pressure changes or middle ear inflammation. During healing, cells need to bridge the perforation in the absence of an initial scaffold. Here, we assessed the contribution, timing and interaction of the different layers during membrane repair by using markers and reporter mice. We showed that the ectodermal layer is retracted after perforation, before proliferating away from the wound edge, with keratin 5 basal cells migrating over the hole to bridge the gap. The mesenchymal and mucosal layers then used this scaffold to complete the repair, followed by advancement of the vasculature. Finally, differentiation of the epithelium led to formation of a scab. Our results reveal the dynamics and interconnections between the embryonic germ layers during repair and highlight how defects might occur.


Subject(s)
Tympanic Membrane Perforation , Tympanic Membrane , Mice , Animals , Tympanic Membrane/injuries , Epithelium , Mucous Membrane , Cell Differentiation
2.
Sci Adv ; 9(31): eadi0482, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37531427

ABSTRACT

Mineralized tissues, such as bones or teeth, are essential structures of all vertebrates. They enable rapid movement, protection, and food processing, in addition to providing physiological functions. Although the development, regeneration, and pathogenesis of teeth and bones have been intensely studied, there is currently no tool to accurately follow the dynamics of growth and healing of these vital tissues in space and time. Here, we present the BEE-ST (Bones and tEEth Spatio-Temporal growth monitoring) approach, which allows precise quantification of development, regeneration, remodeling, and healing in any type of calcified tissue across different species. Using mouse teeth as model the turnover rate of continuously growing incisors was quantified, and role of hard/soft diet on molar root growth was shown. Furthermore, the dynamics of bones and teeth growth in lizards, frogs, birds, and zebrafish was uncovered. This approach represents an effective, highly reproducible, and versatile tool that opens up diverse possibilities in developmental biology, bone and tooth healing, tissue engineering, and disease modeling.


Subject(s)
Tooth , Zebrafish , Mice , Animals , Tooth/physiology , Tooth Root , Bone and Bones , Bone Development
3.
Curr Biol ; 33(11): 2136-2150.e4, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37119816

ABSTRACT

Within mammals, different reproductive strategies (e.g., egg laying, live birth of extremely underdeveloped young, and live birth of well-developed young) have been linked to divergent evolutionary histories. How and when developmental variation across mammals arose is unclear. While egg laying is unquestionably considered the ancestral state for all mammals, many long-standing biases treat the extreme underdeveloped state of marsupial young as the ancestral state for therian mammals (clade including both marsupials and placentals), with the well-developed young of placentals often considered the derived mode of development. Here, we quantify mammalian cranial morphological development and estimate ancestral patterns of cranial shape development using geometric morphometric analysis of the largest comparative ontogenetic dataset of mammals to date (165 specimens, 22 species). We identify a conserved region of cranial morphospace for fetal specimens, after which cranial morphology diversified through ontogeny in a cone-shaped pattern. This cone-shaped pattern of development distinctively reflected the upper half of the developmental hourglass model. Moreover, cranial morphological variation was found to be significantly associated with the level of development (position on the altricial-precocial spectrum) exhibited at birth. Estimation of ancestral state allometry (size-related shape change) reconstructs marsupials as pedomorphic relative to the ancestral therian mammal. In contrast, the estimated allometries for the ancestral placental and ancestral therian were indistinguishable. Thus, from our results, we hypothesize that placental mammal cranial development most closely reflects that of the ancestral therian mammal, while marsupial cranial development represents a more derived mode of mammalian development, in stark contrast to many interpretations of mammalian evolution.


Subject(s)
Marsupialia , Pregnancy , Animals , Female , Marsupialia/genetics , Marsupialia/anatomy & histology , Biological Evolution , Placenta , Mammals/genetics , Mammals/anatomy & histology , Skull/anatomy & histology
4.
Stem Cell Reports ; 18(4): 1015-1029, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36931279

ABSTRACT

Stem cell regulation plays a crucial role during development and homeostasis. Here, an essential source of Wnts from Gli1+ stem/progenitor cells was identified in the murine molar. Loss of Wnt production in Gli1+ apical stem/progenitor cells led to loss of Axin2 at the root apex, mis-regulation of SOX9, loss of BMP and Hh signaling, and truncation of root development. In the absence of Wnt signals, the root epithelium lost its integrity and epithelial identity. This phenotype could be partially mimicked by loss of Sox9 in the Gli1 population. Stabilization of Wnt signaling in the apical papilla led to rapid unordered differentiation of hard tissues and fragmentation of the epithelial root sheath. Wnt signaling from Gli1+ stem/progenitor cells, therefore, orchestrates root development, coordinating mesenchymal and epithelial interactions via SOX9 to regulate stem/progenitor cell expansion and differentiation. Our results demonstrate that disparate stem/progenitor cell populations are unified in their fundamental signaling interactions.


Subject(s)
Stem Cells , Wnt Signaling Pathway , Mice , Animals , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Stem Cells/metabolism , Cell Differentiation/genetics , Tooth Root/metabolism
5.
Dev Cell ; 58(6): 461-473.e7, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36905926

ABSTRACT

Organ development involves the sustained production of diverse cell types with spatiotemporal precision. In the vertebrate jaw, neural-crest-derived progenitors produce not only skeletal tissues but also later-forming tendons and salivary glands. Here we identify the pluripotency factor Nr5a2 as essential for cell-fate decisions in the jaw. In zebrafish and mice, we observe transient expression of Nr5a2 in a subset of mandibular postmigratory neural-crest-derived cells. In zebrafish nr5a2 mutants, nr5a2-expressing cells that would normally form tendons generate excess jaw cartilage. In mice, neural-crest-specific Nr5a2 loss results in analogous skeletal and tendon defects in the jaw and middle ear, as well as salivary gland loss. Single-cell profiling shows that Nr5a2, distinct from its roles in pluripotency, promotes jaw-specific chromatin accessibility and gene expression that is essential for tendon and gland fates. Thus, repurposing of Nr5a2 promotes connective tissue fates to generate the full repertoire of derivatives required for jaw and middle ear function.


Subject(s)
Receptors, Cytoplasmic and Nuclear , Zebrafish , Mice , Animals , Zebrafish/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Cell Differentiation/physiology , Connective Tissue/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Neural Crest/metabolism , Gene Expression Regulation, Developmental
6.
Biology (Basel) ; 12(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36979085

ABSTRACT

A mesiodens is a supernumerary tooth located in the midline of the premaxilla. To investigate the genetic cause of mesiodens, clinical and radiographic examination were performed on 23 family members of a two-generation Hmong family. Whole exome sequencing (WES) or Sanger sequencing were performed in 22 family members and two unrelated Thai patients with mesiodens. WES in the Hmong family revealed a missense mutation (c.1807G>A;p.Glu603Lys) in PTPN23 in seven affected members and six unaffected members. The mode of inheritance was autosomal dominance with incomplete penetrance (53.84%). Two additional mutations in PTPN23, c.2248C>G;p.Pro750Ala and c.3298C>T;p.Arg1100Cys were identified in two unrelated patients with mesiodens. PTPN23 is a regulator of endosomal trafficking functioning to move activated membrane receptors, such as EGFR, from the endosomal sorting complex towards the ESCRT-III complex for multivesicular body biogenesis, lysosomal degradation, and subsequent downregulation of receptor signaling. Immunohistochemical study and RNAscope on developing mouse embryos showed broad expression of PTPN23 in oral tissues, while immunofluorescence showed that EGFR was specifically concentrated in the midline epithelium. Importantly, PTPN23 mutant protein was shown to have reduced phosphatase activity. In conclusion, mesiodens were associated with genetic variants in PTPN23, suggesting that mesiodens may form due to defects in endosomal trafficking, leading to disrupted midline signaling.

7.
Development ; 150(7)2023 04 01.
Article in English | MEDLINE | ID: mdl-36971701

ABSTRACT

The vestibular lamina (VL) forms the oral vestibule, creating a gap between the teeth, lips and cheeks. In a number of ciliopathies, formation of the vestibule is defective, leading to the creation of multiple frenula. In contrast to the neighbouring dental lamina, which forms the teeth, little is known about the genes that pattern the VL. Here, we establish a molecular signature for the usually non-odontogenic VL in mice and highlight several genes and signalling pathways that may play a role in its development. For one of these, the Sonic hedgehog (Shh) pathway, we show that co-receptors Gas1, Cdon and Boc are highly expressed in the VL and act to enhance the Shh signal from the forming incisor region. In Gas1 mutant mice, expression of Gli1 was disrupted and the VL epithelium failed to extend due to a loss of proliferation. This defect was exacerbated in Boc/Gas1 double mutants and could be phenocopied using cyclopamine in culture. Signals from the forming teeth, therefore, control development of the VL, coordinating the development of the dentition and the oral cavity.


Subject(s)
Hedgehog Proteins , Signal Transduction , Mice , Animals , Hedgehog Proteins/metabolism , Signal Transduction/genetics , Mouth , Incisor/metabolism
8.
Evol Dev ; 25(1): 3-14, 2023 01.
Article in English | MEDLINE | ID: mdl-36504442

ABSTRACT

A jaw joint between the squamosal and dentary is a defining feature of mammals and is referred to as the temporomandibular joint (TMJ) in humans. Driven by changes in dentition and jaw musculature, this new joint evolved early in the mammalian ancestral lineage and permitted the transference of the ancestral jaw joint into the middle ear. The fossil record demonstrates the steps in the cynodont lineage that led to the acquisition of the TMJ, including the expansion of the dentary bone, formation of the coronoid process, and initial contact between the dentary and squamosal. From a developmental perspective, the components of the TMJ form through tissue interactions of muscle and skeletal elements, as well as through interaction between the jaw and the cranial base, with the signals involved in these interactions being both biomechanical and biochemical. In this review, we discuss the development of the TMJ in an evolutionary context. We describe the evolution of the TMJ in the fossil record and the development of the TMJ in embryonic development. We address the formation of key elements of the TMJ and how knowledge from developmental biology can inform our understanding of TMJ evolution.


Subject(s)
Biological Evolution , Temporomandibular Joint , Humans , Animals , Ear, Middle/physiology , Mammals , Fossils , Jaw
9.
Dev Biol ; 495: 8-18, 2023 03.
Article in English | MEDLINE | ID: mdl-36565838

ABSTRACT

In the echidna, after development in utero, the egg is laid in the pouch and incubated for 10 days. During this time, the fetuses develop an egg tooth and caruncle to help them hatch. Using rare and unprecedented access to limited echidna pre- and post-hatching tissues, development of the egg tooth and caruncle were assessed by micro-CT, histology and immunofluorescence. Unlike therian tooth germs that develop by placode invagination, the echidna egg tooth developed by evagination, similar to the first teeth in some reptiles and fish. The egg tooth ankylosed to the premaxilla, rather than forming a tooth root with ligamentous attachment found in other mammals, with loss of the egg tooth associated with high levels of activity odontoclasts and apoptosis. The caruncle formed as a separate mineralisation from the adjacent nasal capsule, and as observed in birds and turtles, the nasal region epithelium on top of the nose expressed markers of cornification. Together, this highlights that the monotreme egg tooth shares many similarities with typical reptilian teeth, suggesting that this tooth has been conserved from a common ancestor of mammals and reptiles.


Subject(s)
Tachyglossidae , Tooth , Animals , Tachyglossidae/genetics , Mammals , Reptiles , Tooth Germ
10.
Psychol Serv ; 20(3): 435-443, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36355663

ABSTRACT

In recent years, law enforcement agencies have come under severe criticism for officer misconduct and mistakes. As a result, changes have been imposed upon these agencies from outside of law enforcement. These changes include mandated policies, budget allocations, and in extreme cases, consent decrees. A national model launched in 2020, the Active Bystandership for Law Enforcement (ABLE) Project seeks to give agencies the tools they need to create culture change internally by embracing officer peer intervention as a tool to prevent misconduct, avoid mistakes, and promote health and wellness. This article describes the following regarding ABLE: (a) history and program development timeline, (b) programmatic structure and objectives, and (c) an examination of ABLE's potential to help law enforcement agencies create meaningful, positive culture change to improve public health and safety using active bystandership. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Health Promotion , Law Enforcement , Humans , Police , Public Health
11.
J Anat ; 242(2): 224-234, 2023 02.
Article in English | MEDLINE | ID: mdl-36181694

ABSTRACT

The vestibular lamina (VL) forms as an epithelial outgrowth parallel to the dental lamina (DL) in the oral cavity. During late development, it opens to create a furrow that divides the dental tissue from the cheeks and lips and is known as the vestibule. Defects in this process lead to failure in the separation of the teeth from the lips and cheeks, including the presence of multiple frenula. In this paper, the development of the VL is followed in the mouse, from epithelial placode in the embryo to postnatal opening and vestibule formation. During early outgrowth, differential proliferation controls the curvature of the VL as it extends under the forming incisors. Apoptosis plays a role in thinning the deepest part of the lamina, while terminal differentiation of the epithelium, highlighted by the expression of loricrin and flattening of the nuclei, predates the division of the VL into two to create the vestibule. Development in the mouse is compared to the human VL, with respect to the relationship of the VL to the DL, VL morphology and mechanisms of opening. Overall, this paper provides insight into an understudied part of the oral anatomy, shedding light on how defects could form in this region.


Subject(s)
Tooth , Vestibule, Labyrinth , Humans , Animals , Mice , Epithelium , Apoptosis , Lip
12.
Front Genet ; 13: 933416, 2022.
Article in English | MEDLINE | ID: mdl-36299576

ABSTRACT

High incidence of chronic otitis media is associated with human craniofacial syndromes, suggesting that defects in the formation of the middle ear and associated structures can have a knock-on effect on the susceptibility to middle ear inflammation. Patients with branchio-oto-renal (BOR) syndrome have several defects in the ear leading to both sensorineural and conductive hearing loss, including otitis media. 40% of BOR syndrome cases are due to Eya1 haploinsufficiency, with mouse models affecting Eya1, mimicking many of the defects found in patients. Here, we characterize the onset, consequences, and underlying causes of chronic otitis media in Eya1 heterozygous mice. Cavitation defects were evident in these mice from postnatal day (P)11 onwards, with mesenchyme around the promontory and attic regions of the middle ear space. This mesenchyme was still prominent in adult Eya1 heterozygous mice, while the wild-type littermates had fully aerated ears from P14 onwards. MicroCT analysis highlighted a significantly smaller bulla, confirming the link between bulla size defects and the ability of the mesenchyme to retract successfully. Otitis media was observed from P14, often presenting unilaterally, resulting in hyperplasia of the middle ear mucosa, expansion of secretory cells, defects in the motile cilia, and changes in basal epithelial cell markers. A high incidence of otitis media was identified in older mice but only associated with ears with retained mesenchyme. To understand the impact of the environment, the mouse line was rederived onto a super-clean environment. Cavitation defects were still evident at early stages, but these generally resolved over time, and importantly, no signs of otitis media were observed at 6 weeks. In conclusion, we show that a small bulla size is closely linked to defects in cavitation and the presence of retained mesenchyme. A delay in retraction of the mesenchyme predates the onset of otitis media, making the ears susceptible to its development. Early exposure to OM appears to exacerbate the cavitation defect, with mesenchyme evident in the middle ear throughout the animal's life. This highlights that permanent damage to the middle ear can arise as a consequence of the early onset of OM.

13.
Front Bioeng Biotechnol ; 10: 962040, 2022.
Article in English | MEDLINE | ID: mdl-36105604

ABSTRACT

Major organs and tissues require close association with the vasculature during development and for later function. Blood vessels are essential for efficient gas exchange and for providing metabolic sustenance to individual cells, with endothelial cells forming the basic unit of this complex vascular framework. Recent research has revealed novel roles for endothelial cells in mediating tissue morphogenesis and differentiation during development, providing an instructive role to shape the tissues as they form. This highlights the importance of providing a vasculature when constructing tissues and organs for tissue engineering. Studies in various organ systems have identified important signalling pathways crucial for regulating the cross talk between endothelial cells and their environment. This review will focus on the origin and migration of craniofacial endothelial cells and how these cells influence the development of craniofacial tissues. For this we will look at research on the interaction with the cranial neural crest, and individual organs such as the salivary glands, teeth, and jaw. Additionally, we will investigate the methods used to understand and manipulate endothelial networks during the development of craniofacial tissues, highlighting recent advances in this area.

14.
Arch Oral Biol ; 142: 105514, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35961235

ABSTRACT

OBJECTIVE: The objective of this study was to investigate molecular etiologies of oral exostoses and dental anomalies in 14 patients from eight families. METHODS: Oral and radiographic examinations were performed on every patient. Whole exome and Sanger sequencing were performed on DNA of the patients, the unaffected parents and unaffected siblings. LRP6 mutant proteins were modeled and analyzed. RESULTS: Five mutations in LRP6, including four missense (p.Glu72Lys, p.Lys82Asn, Tyr418His, and p.Ile773Val) and one nonsense mutation (p.Arg32Ter), were identified. These mutations have not been reported to be associated with dental anomalies or oral exostoses. Oral features included a variety of oral exostoses (7 of the 14 patients), root defects (6 of the 14 patients), and tooth agenesis (5 of the 14 patients). Less common dental anomalies included microdontia, tooth fusion, odontomas, and mesiodens. Analysis of the protein models of the five LRP6 mutations shed light on their likely impact on LRP6 protein structure and function. CONCLUSION: Fourteen patients with five LRP6 mutations, including two recurrent mutations and three novel ones, are reported. Our study shows for the first time that mutations in LRP6 are associated with mesiodens, fusion of teeth, odontomas, microdontia, long roots, molars with unseparated roots, and taurodontism.


Subject(s)
Exostoses , Odontoma , Tooth Abnormalities , Tooth, Supernumerary , Humans , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mutation , Tooth Abnormalities/genetics , Wnt Signaling Pathway
15.
Cell Rep ; 39(2): 110663, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35417692

ABSTRACT

Fibroblast growth factor 10 (FGF10) is well established as a mesenchyme-derived growth factor and a critical regulator of fetal organ development in mice and humans. Using a single-cell RNA sequencing (RNA-seq) atlas of salivary gland (SG) and a tamoxifen inducible Fgf10CreERT2:R26-tdTomato mouse, we show that FGF10pos cells are exclusively mesenchymal until postnatal day 5 (P5) but, after P7, there is a switch in expression and only epithelial FGF10pos cells are observed after P15. Further RNA-seq analysis of sorted mesenchymal and epithelial FGF10pos cells shows that the epithelial FGF10pos population express the hallmarks of ancient ionocyte signature Forkhead box i1 and 2 (Foxi1, Foxi2), Achaete-scute homolog 3 (Ascl3), and the cystic fibrosis transmembrane conductance regulator (Cftr). We propose that epithelial FGF10pos cells are specialized SG ionocytes located in ducts and important for the ionic modification of saliva. In addition, they maintain FGF10-dependent gland homeostasis via communication with FGFR2bpos ductal and myoepithelial cells.


Subject(s)
Fibroblast Growth Factor 10 , Receptor, Fibroblast Growth Factor, Type 2 , Salivary Glands , Animals , Epithelial Cells/metabolism , Fibroblast Growth Factor 10/genetics , Fibroblast Growth Factor 10/metabolism , Forkhead Transcription Factors/metabolism , Mice , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Salivary Glands/cytology , Salivary Glands/metabolism , Signal Transduction
16.
Clin Genet ; 102(1): 66-71, 2022 07.
Article in English | MEDLINE | ID: mdl-35352826

ABSTRACT

Mutations in LTBP3 are associated with Dental Anomalies and Short Stature syndrome (DASS; MIM 601216), which is characterized by hypoplastic type amelogenesis imperfecta, hypodontia, underdeveloped maxilla, short stature, brachyolmia, aneurysm and dissection of the thoracic aorta. Here we report a novel (p.Arg545ProfsTer22) and a recurrent (c.3107-2A > G) LTBP3 variants, in a Turkish family affected with DASS. The proband, who carried compound heterozygous variant c.3107-2A > G, p.Arg545ProfsTer22, was most severely affected with DASS. The proband's father, who carried the heterozygous variant c.3107-2A > G had short stature and prognathic mandible. The mother and brother of the proband carried the heterozygous variant p.Arg545ProfsTer22, but only the mother showed any DASS characteristics. The c.3107-2A > G and the p.Arg545ProfsTer22 variants are expected to result in abnormal LTPB3 protein, failure of TGFß-LAP-LTBP3 complex formation, and subsequent disruption of TGFß secretion and activation. This is the first report of heterozygous carriers of LTBP3 variants showing phenotypes. The new findings of DASS found in this family include taurodontism, single-rooted molars, abnormal dentin, calcified dental pulp blood vessels, prognathic mandible, failure of mandibular tooth eruption, interatrial septal aneurysm, secundum atrial septal defect, tricuspid valve prolapse, and a recurrent glenohumeral joint dislocation.


Subject(s)
Amelogenesis Imperfecta , Dwarfism , Osteochondrodysplasias , Tooth Abnormalities , Amelogenesis Imperfecta/genetics , Dwarfism/genetics , Humans , Latent TGF-beta Binding Proteins/genetics , Male , Osteochondrodysplasias/genetics , Phenotype , Tooth Abnormalities/genetics , Transforming Growth Factor beta/genetics
17.
BMC Biol ; 20(1): 67, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35296311

ABSTRACT

BACKGROUND: Mice carrying targeted mutations are important for investigating gene function and the role of genes in disease, but off-target mutagenic effects associated with the processes of generating targeted alleles, for instance using Crispr, and culturing embryonic stem cells, offer opportunities for spontaneous mutations to arise. Identifying spontaneous mutations relies on the detection of phenotypes segregating independently of targeted alleles, and having a broad estimate of the level of mutations generated by intensive breeding programmes is difficult given that many phenotypes are easy to miss if not specifically looked for. Here we present data from a large, targeted knockout programme in which mice were analysed through a phenotyping pipeline. Such spontaneous mutations segregating within mutant lines may confound phenotypic analyses, highlighting the importance of record-keeping and maintaining correct pedigrees. RESULTS: Twenty-five lines out of 1311 displayed different deafness phenotypes that did not segregate with the targeted allele. We observed a variety of phenotypes by Auditory Brainstem Response (ABR) and behavioural assessment and isolated eight lines showing early-onset severe progressive hearing loss, later-onset progressive hearing loss, low frequency hearing loss, or complete deafness, with vestibular dysfunction. The causative mutations identified include deletions, insertions, and point mutations, some of which involve new genes not previously associated with deafness while others are new alleles of genes known to underlie hearing loss. Two of the latter show a phenotype much reduced in severity compared to other mutant alleles of the same gene. We investigated the ES cells from which these lines were derived and determined that only one of the 8 mutations could have arisen in the ES cell, and in that case, only after targeting. Instead, most of the non-segregating mutations appear to have occurred during breeding of mutant mice. In one case, the mutation arose within the wildtype colony used for expanding mutant lines. CONCLUSIONS: Our data show that spontaneous mutations with observable effects on phenotype are a common side effect of intensive breeding programmes, including those underlying targeted mutation programmes. Such spontaneous mutations segregating within mutant lines may confound phenotypic analyses, highlighting the importance of record-keeping and maintaining correct pedigrees.


Subject(s)
Deafness , Hearing Loss , Alleles , Animals , Deafness/genetics , Hearing Loss/genetics , Mice , Mutagenesis , Mutation
18.
J Hum Genet ; 67(2): 115-118, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34408272

ABSTRACT

FREM2 is a member of the FREM2-FRAS1-FREM1 protein complex which contributes to epithelial-mesenchymal coupling. We report a Thai woman with cryptophthalmos, dental anomalies, and oral vestibule defect. A compound heterozygous mutation (c.6499C>T; p.Arg2167Trp and c.641_642del; p.Glu214GlyfsTer135) in the FREM2 gene was identified. The frameshift variant p.Glu214GlyfsTer135 is de novo and novel. It is predicted to result in the loss of most of the functional domains. The p.Arg2167Trp mutation was predicted to disrupt both Ca2+ binding and conformational change. The Arg2167Trp mutant protein has been shown to cause partial loss of function, decrease its interaction with FREM1 and result in impaired function of the FRAS1-FREM2-FREM1 complex. Frem2 was shown to be expressed in the developing tooth and vestibular lamina. It is hypothesized that these mutations resulted in aberration of the FRAS1-FREM2-FREM1 protein complex, resulting in loss of nephronectin, basement membrane disruption, and abnormal epithelial-mesenchymal interactions leading to dental and oral vestibule malformations.


Subject(s)
Extracellular Matrix Proteins/genetics , Eye Abnormalities/genetics , Eyelashes/abnormalities , Eyelids/abnormalities , Mouth Abnormalities/genetics , Mutation , Tooth Abnormalities/genetics , Adult , Female , Humans , Exome Sequencing/methods
19.
Methods Mol Biol ; 2403: 277-294, 2022.
Article in English | MEDLINE | ID: mdl-34913130

ABSTRACT

Salivary glands are branching organs which develop by bud and cleft formation to create an organ with a large surface area. The epithelium and mesenchyme signal back and forth to control this branching process, with additional cues provided by the parasympathetic nerves and blood vessels that surround the developing branches. This branching morphogenesis can be recapitulated successfully in organ culture , allowing access to the tissue to follow development and manipulate the tissue interactions, and signals. To culture glands, the filter-grid method has been widely used, allowing the development of salivary glands cultured as a whole organ, or the gland epithelium in isolation, or with the surrounding craniofacial tissue in a cranial slice. Here, we describe the methods for each approach and show the applicability of culturing glands from a wide variety of species: mouse , snake, and human. The resulting samples and data from these cultures can be employed for morphological and molecular analysis, with some examples described in this chapter, bringing valuable knowledge to our understanding of branching morphogenesis.


Subject(s)
Salivary Glands , Animals , Epithelial Cells , Epithelium , Mesoderm , Mice , Morphogenesis , Organ Culture Techniques , Submandibular Gland
20.
Front Physiol ; 13: 1033130, 2022.
Article in English | MEDLINE | ID: mdl-36699680

ABSTRACT

Ectodysplasin (Eda) plays important roles in both shaping the developing tooth and establishing the number of teeth within the tooth row. Sonic hedgehog (Shh) has been shown to act downstream of Eda and is involved in the initiation of tooth development. Eda-/- mice possess hypoplastic and hypomineralized incisors and show changes in tooth number in the molar region. In the present study we used 3D reconstruction combined with expression analysis, cell lineage tracing experiments, and western blot analysis in order to investigate the formation of the incisor germs in Eda-/- mice. We show that a lack of functional Eda protein during early stages of incisor tooth germ development had minimal impact on development of the early expression of Shh in the incisor, a region proposed to mark formation of a rudimental incisor placode and act as an initiating signalling centre. In contrast, deficiency of Eda protein had a later impact on expression of Shh in the primary enamel knot of the functional tooth. Eda-/- mice had a smaller region where Shh was expressed, and a reduced contribution from Shh descendant cells. The reduction in the enamel knot led to the formation of an abnormal enamel organ creating a hypoplastic functional incisor. Eda therefore appears to influence the spatial formation of the successional signalling centres during odontogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...