Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polym Chem ; 8(34): 4983-4987, 2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28959359

ABSTRACT

We report nanoassemblies based on block copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) in which drug cleavage enhances the biological compatibility of the original polymer carrier by regeneration of HPMA units. Drug release via ester hydrolysis suggests this approach offers potential for stimuli-responsive drug delivery under acidic conditions.

2.
ACS Macro Lett ; 6(4): 452-457, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-35610863

ABSTRACT

We report a new strategy toward polymer-protein conjugates using a grafting-from method that employs photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. Initial screening of reaction conditions showed rapid polymerization of acrylamides under high dilution in water using eosin Y as a photocatalyst in the presence of a tertiary amine. A lysozyme-modified chain transfer agent allowed the same conditions to be utilized for grafting-from polymerizations, and we further demonstrated the broad scope of this technique by polymerizing acrylic and styrenic monomers. Finally, retention of the RAFT end group was suggested by successful chain extension with N-isopropylacrylamide from the polymer-protein conjugates to form block copolymer-protein conjugates. This strategy should expand the capabilities of grafting-from proteins with RAFT polymerization under mild conditions to afford diverse functional materials.

3.
Biomacromolecules ; 16(8): 2374-81, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26151628

ABSTRACT

Polymers of similar molecular weights and chemical constitution but varying in their macromolecular architectures were conjugated to osteoprotegerin (OPG) to determine the effect of polymer topology on protein activity in vitro and in vivo. OPG is a protein that inhibits bone resorption by preventing the formation of mature osteoclasts from the osteoclast precursor cell. Accelerated bone loss disorders, such as osteoporosis, rheumatoid arthritis, and metastatic bone disease, occur as a result of increased osteoclastogenesis, leading to the severe weakening of the bone. OPG has shown promise as a treatment in bone disorders; however, it is rapidly cleared from circulation through rapid liver uptake, and frequent, high doses of the protein are necessary to achieve a therapeutic benefit. We aimed to improve the effectiveness of OPG by creating OPG-polymer bioconjugates, employing reversible addition-fragmentation chain transfer polymerization to create well-defined polymers with branching densities varying from linear, loosely branched to densely branched. Polymers with each of these architectures were conjugated to OPG using a "grafting-to" approach, and the bioconjugates were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The OPG-polymer bioconjugates showed retention of activity in vitro against osteoclasts, and each bioconjugate was shown to be nontoxic. Preliminary in vivo studies further supported the nontoxic characteristics of the bioconjugates, and measurement of the bone mineral density in rats 7 days post-treatment via peripheral quantitative computed tomography suggested a slight increase in bone mineral density after administration of the loosely branched OPG-polymer bioconjugate.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Bone Resorption/drug therapy , Osteoporosis/drug therapy , Osteoprotegerin/chemistry , Animals , Arthritis, Rheumatoid/pathology , Bone Density/drug effects , Bone Resorption/pathology , Humans , Osteoclasts/drug effects , Osteoclasts/pathology , Osteoporosis/pathology , Osteoprotegerin/administration & dosage , Polymers/administration & dosage , Polymers/chemistry , Rats
4.
Chem Sci ; 6(2): 1230-1236, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-29560209

ABSTRACT

Polymerization-induced self-assembly (PISA) is a versatile technique to achieve a wide range of polymeric nanoparticle morphologies. Most previous examples of self-assembled soft nanoparticle synthesis by PISA rely on a growing solvophobic polymer block that leads to changes in nanoparticle architecture during polymerization in a selective solvent. However, synthesis of block copolymers with a growing stimuli-responsive block to form various nanoparticle shapes has yet to be reported. This new concept using thermoresponsive polymers is termed polymerization-induced thermal self-assembly (PITSA). A reversible addition-fragmentation chain transfer (RAFT) polymerization of N-isopropylacrylamide from a hydrophilic chain transfer agent composed of N,N-dimethylacrylamide and acrylic acid was carried out in water above the known lower critical solution temperature (LCST) of poly(N-isopropylacrylamide) (PNIPAm). After reaching a certain chain length, the growing PNIPAm self-assembled, as induced by the LCST, into block copolymer aggregates within which dispersion polymerization continued. To characterize the nanoparticles at ambient temperatures without their dissolution, the particles were crosslinked immediately following polymerization at elevated temperatures via the reaction of the acid groups with a diamine in the presence of a carbodiimide. Size exclusion chromatography was used to evaluate the unimer molecular weight distributions and reaction kinetics. Dynamic light scattering and transmission electron microscopy provided insight into the size and morphologies of the nanoparticles. The resulting block copolymers formed polymeric nanoparticles with a range of morphologies (e.g., micelles, worms, and vesicles), which were a function of the PNIPAm block length.

SELECTION OF CITATIONS
SEARCH DETAIL
...