Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 4(12): 1023-7, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16307117

ABSTRACT

Recent AFM data demonstrate that mature photosynthetic membranes of R. sphaeroides are composed of rows of dimeric RC-LH1-PufX complexes with some LH2 complexes 'sandwiched' between these rows of core complexes, and others in discrete LH2-only domains which might form the light-responsive complement of the LH2 antenna. The present work applies membrane fractionation, radiolabelling and LDS-PAGE techniques to investigate the response of R. sphaeroides to lowered light intensity. The kinetics underlying this adaptation to low light conditions were revealed by radiolabelling with the bacteriochlorophyll (bchl) biosynthetic precursor, delta-aminolevulinate, which allowed us to measure only the bchls synthesised after the light intensity shift. We show that (1) the increase in LH2 antenna size is mainly restricted to the mature ICM membrane fraction, and the antenna composition of the precursor upper pigmented band (UPB) membrane remains constant, (2) the precursor UPB membrane is enriched in bchl synthase, the terminal enzyme of the bchl biosynthetic pathway, and (3) the LH2 and the complexes of intermediate migration in LDS-PAGE exhibit completely different labelling kinetics. Thus, new photosynthetic complexes, mainly LH2, are synthesised and assembled at the membrane initiation UPB sites, where the LH2 rings pack between the rows of dimeric cores fostering new LH2-LH1 interactions. Mature membranes also assemble new LH2 rings, but in this case the 'sandwich' regions between the rows of core dimers are already fully occupied and the bulk antenna pool is the favoured location for these new LH2 complexes.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Photosynthesis , Rhodobacter sphaeroides/cytology , Rhodobacter sphaeroides/metabolism , Bacteriochlorophylls/metabolism , Kinetics , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...