Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 153(1): 285-93, 2010 May.
Article in English | MEDLINE | ID: mdl-20304968

ABSTRACT

Carboxysomes are an essential part of the cyanobacterial CO2-concentrating mechanism, consisting of a protein shell and an interior of Rubisco. The beta-carboxysome shell protein CcmM forms two peptides via a proposed internal ribosomal entry site (IRES) within the ccmM transcript in Synechococcus PCC7942. The abundant short form (35 kD, M35) consists of Rubisco small subunit-like repeats and binds Rubisco. The lower abundance long form (58 kD, M58) also contains a gamma-carbonic anhydrase-like domain, which binds the carboxysomal carbonic anhydrase, CcaA. We examined whether these CcmM forms arise via an IRES or by other means. Mutations of a putative internal start codon (GTG) and Shine-Dalgarno sequence within ccmM, along with a gene coding for M35 alone, were examined in the high-CO2-requiring (HCR) carboxysomeless mutant, DeltaccmM. Expression of wild-type ccmM in DeltaccmM restored the wild-type phenotype, while mutation of putative start and Shine-Dalgarno sequences led to as much as 20-fold reduction in M35 content with no recovery from HCR phenotype. These cells also contained small electron-dense structures. Cells producing little or no M58, but sufficient M35, were found to contain large electron-dense structures, no CcaA, and had a HCR phenotype. Large subcellular aggregates can therefore form in the absence of M58, suggesting a role for M35 in internal carboxysome Rubisco packing. The results confirm that M35 is independently translated via an IRES within ccmM. Importantly, the data reveal that functional carboxysomes require both M35 and M58 in sufficient quantities and with a minimum stoichiometry of close to 1:1.


Subject(s)
Bacterial Proteins/metabolism , Carbon Dioxide/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Synechococcus/metabolism , Codon, Initiator , Synechococcus/genetics
2.
Proc Natl Acad Sci U S A ; 101(52): 18228-33, 2004 Dec 28.
Article in English | MEDLINE | ID: mdl-15596724

ABSTRACT

Cyanobacteria possess a highly effective CO(2)-concentrating mechanism that elevates CO(2) concentrations around the primary carboxylase, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase). This CO(2)-concentrating mechanism incorporates light-dependent, active uptake systems for CO(2) and HCO(-)(3). Through mutant studies in a coastal marine cyanobacterium, Synechococcus sp. strain PCC7002, we identified bicA as a gene that encodes a class of HCO(-)(3) transporter with relatively low transport affinity, but high flux rate. BicA is widely represented in genomes of oceanic cyanobacteria and belongs to a large family of eukaryotic and prokaryotic transporters presently annotated as sulfate transporters or permeases in many bacteria (SulP family). Further gain-of-function experiments in the freshwater cyanobacterium Synechococcus PCC7942 revealed that bicA expression alone is sufficient to confer a Na(+)-dependent, HCO(3)(-) uptake activity. We identified and characterized three cyanobacterial BicA transporters in this manner, including one from the ecologically important oceanic strain, Synechococcus WH8102. This study presents functional data concerning prokaryotic members of the SulP transporter family and represents a previously uncharacterized transport function for the family. The discovery of BicA has significant implications for understanding the important contribution of oceanic strains of cyanobacteria to global CO(2) sequestration processes.


Subject(s)
Bicarbonates/metabolism , Cyanobacteria/metabolism , Sodium-Bicarbonate Symporters/chemistry , Biological Transport , Carbon/chemistry , Carbon/pharmacology , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Dose-Response Relationship, Drug , Genetic Vectors , Hydrogen-Ion Concentration , Kinetics , Mutation , Oxygen/metabolism , Photosynthesis , Phylogeny , Physiology , Reverse Transcriptase Polymerase Chain Reaction , Ribulose-Bisphosphate Carboxylase/pharmacology , Silicon/chemistry , Sodium/chemistry , Sodium-Bicarbonate Symporters/physiology , Synechococcus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...